• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geometric changes of 742 North Cascade glaciers derived from 1958 and 2006 aerial imagery

Satinsky, Ashley M. January 2009 (has links)
Thesis (M.S.)--University of Delaware, 2009. / Principal faculty advisor: Michael A. O'Neal, Dept. of Geography. Includes bibliographical references.
2

Habitat associations of riparian beetles (Coleoptera) at Big Beaver Creek Research Natural Area, North Cascades National Park, Washington

LaBonte, James R. 18 March 2002 (has links)
Beetle diversity and habitat associations of five prevalent riparian plant communities were examined along the lower reaches of Big Beaver Creek Research Natural Area, North Cascades National Park, Washington. These communities were defined by dominant tree species, and included Alder Swamps, Cedar-Hemlock Forests, Douglas-fir Forests, Gravel Bars, and Willow-Sedge Swamps. Monthly samples were taken with pitfall traps from 10 randomly selected patches per habitat during the snow-free periods (mid-June through mid-October) of 1995 and 1996. A total of 8,179 non-necrophagous beetles was collected, comprising 4 families and 290 species. Four families - Staphylinidae (43%), Carabidae (31%), Elateridae (12%), and Anthicidae (6%) accounted for 92% of all individuals. Four families encompassed 65% of all species Staphylinidae (31%), Carabidae (19%), Elateridae (8%), arid Leiodidae (7%) A few species accounted for the majority of individuals. Almost 51% of individuals were found among just 20 species. The five most abundant species in each habitat accounted for 33% (Alder Swamps) to 71% (Gravel Bars) of individuals. Beetle abundance and species composition differed among habitats. Abundance ranged from 1,530 (Cedar-Hemlock Forests) to 2,071 (Alder Swamps) . Abundance per trap per month varied from 16 (Willow-sedge Swamps) to 27 (Alder Swamps). Species richness was lowest in Douglas-fir Forests (76) and highest in Alder Swamps (119) Simpson's 1-D index ranged from 0.74 (Douglas-fir Forests) to 0.96 (Alder Swamps). Species were categorized as detritivores, fungivores, herbivores, omnivores, predators, and unknowns. Individuals and species of predators and fungivores were generally numerically dominant. Herbivores and omnivores contributed few species and individuals. Gravel Bars virtually lacked fungivores and were the only community with many (more than 30%) detrivorous individuals. Two patterns of seasonal abundance were evident. Abundance was highest in June in the two open habitats, Gravel Bars and Willow-Sedge Swamps, thereafter sharply and continuously declining into October. Abundance peaked during September in the forested habitats. Baseline data was acquired about the North Cascades National Park beetle faunas, furthering Park goals to perpetuate habitat and community assemblage integrity. In a larger context, this information has also enriched the understanding of the arthropod faunas of the Pacific Northwest. / Graduation date: 2002
3

Glacier Change in the North Cascades, Washington: 1900-2009

Dick, Kristina Amanda 06 June 2013 (has links)
Glaciers respond to local climate changes making them important indicators of regional climate change. The North Cascades region of Washington is the most glaciated region in the lower-48 states with approximately 25% of all glaciers and 40% of the total ice-covered area. While there are many on-going investigations of specific glaciers, little research has addressed the entire glacier cover of the region. A reference inventory of glaciers was derived from a comparison of two different inventories dating to about 1958. The different inventories agree within 93% of total number of glaciers and 94% of total ice-covered area. To quantify glacier change over the past century aerial photographs, topographic maps, and geologic maps were used. In ~1900 total area was about 533.89 ± 22.77 km2 and by 2009 the area was reduced by -56% ± 3% to 236.20 ± 12.60 km2. Most of that change occurred in the first half of the 20th century, between 1900 and 1958, -245.59 ± 25.97 km2 (-46% ± 5%) was lost, followed by a period of stability/growth in mid-century (-1% ± 3% from 1958-1990) then decline since the 1990s (-9% ± 3% from 1990-2009). The century-scale loss is associated with increasing regional temperatures warming in winter and summer; precipitation shows no trend. On a decadal time scale winter precipitation and winter and summer temperatures are important factors correlated with area loss. Topographically, smaller glaciers at lower elevations with steeper slopes and higher mean insolation exhibited greater loss than higher, gentler more shaded glaciers.
4

Regional Modeling of the Glaciers of the North Cascades Mountains, Washington, USA

Gray, Christina Eileen 10 July 2019 (has links)
Glaciers in the North Cascades store winter snowfall as ice and release it in late summer as melt, providing an important regional source of water and hydroelectric energy. The future of glaciers in the North Cascades, Washington, were evaluated using a regional glaciation model driven by the Community Climate System Model 4 global climate model. The climate model was coupled with three Representative Concentration Pathways (RCPs), 2.6, 4.5, and 8.5. These RCPs provide a business-as-usual scenario (RCP 8.5), which assumes society makes little to no efforts to reduce greenhouse gas emissions, a best-case scenario (RCP 2.6) with strong attempts to mitigate greenhouse gas emissions, and a moderate scenario (RCP 4.5). Spun up from 850 C.E., modeled glacier area for 1970 was 96-102% of observed. By 2100 the predicted area relative to the total observed area in 1900 was 42% for RCP 2.6, 16% for RCP 45, and 5% for RCP 8.5. By 2100 only glaciers on high peaks, such as Mt. Baker and Glacier Peak, will remain (145.98 km2, RCP 2.6; 70.49 km2, RCP 4.5; 16.82 km2, RCP 8.5) and entirely gone by 2200 in any of the three climate scenarios.
5

Geomorphology and glacial geology of the Methow Drainage Basin, eastern North Cascade Range, Washington,

Waitt, Richard B. January 1972 (has links)
Thesis (Ph. D.)--University of Washington. / Bibliography: l. [144]-154.
6

Evolution du refroidissement, de l'exhumation et de la topographie des arcs magmatiques actifs : exemple des North Cascades (USA) et de zone de faille Motagua (Guatemala) / Cooling, exhumation and topographic evolution in continental magmatic arcs : an integrated thermochronological and numerical modelling approach : example from North Cascades (U.S.A.) and the Motagua fault zone (Guatemala)

Simon-Labric, Thibaud 27 January 2011 (has links)
Cette thèse cible l'étude de la structure thermique de la croûte supérieure (<10km) dans les arcs magmatiques continentaux, et son influence sur l'enregistrement thermochronologique de leur exhumation et de leur évolution topographique. Nous portons notre regard sur deux chaînes de montagne appartenant aux Cordillères Américaines : Les Cascades Nord (USA) et la zone de faille Motagua (Guatemala). L'approche utilisée est axée sur l'utilisation de la thermochronologie (U-Th-Sm)/He sur apatite et zircon, couplée avec la modélisation numérique de la structure thermique de la croûte. Nous mettons en évidence la variabilité à la fois spatiale et temporelle du gradient géothermique, et attirons l'attention du lecteur sur l'importance de prendre en compte la multitude des processus géologiques perturbant la structure thermique dans les chaînes de type cordillère, c'est à dire formées lors de la subduction océanique sous un continent. / This thesis focuses on the influence of the dynamic thermal structure of the upper crust (<10km) on the thermochronologic record of the exhumational and topographic history of magmatic continental arcs. Two mountain belts from the American Cordillera are studied: the North Cascades (USA) and the Motagua fault zone (Guatemala). I use a combined approach coupling apatite and zircon (U-Th-Sm)/He thermochronology and thermo-kinematic numerical modelling. This study highlights the temporal and spatial variability of the geothermal gradient and the importance to take into account the different geological processes that perturb the thermal structure of Cordilleran-type mountain belts (i.e. mountain belts related to oceanic subduction underneath a continent).
7

Evolution du refroidissement, de l'exhumation et de la topographie des arcs magmatiques actifs : exemple des North Cascades (USA) et de zone de faille Motagua (Guatemala)

Simon-Labric, Thibaud 27 January 2011 (has links) (PDF)
Cette thèse cible l'étude de la structure thermique de la croûte supérieure (<10km) dans les arcs magmatiques continentaux, et son influence sur l'enregistrement thermochronologique de leur exhumation et de leur évolution topographique. Nous portons notre regard sur deux chaînes de montagne appartenant aux Cordillères Américaines : Les Cascades Nord (USA) et la zone de faille Motagua (Guatemala). L'approche utilisée est axée sur l'utilisation de la thermochronologie (U-Th-Sm)/He sur apatite et zircon, couplée avec la modélisation numérique de la structure thermique de la croûte. Nous mettons en évidence la variabilité à la fois spatiale et temporelle du gradient géothermique, et attirons l'attention du lecteur sur l'importance de prendre en compte la multitude des processus géologiques perturbant la structure thermique dans les chaînes de type cordillère, c'est à dire formées lors de la subduction océanique sous un continent.
8

Preserving Nature through Film: Wilderness Alps of Stehekin and the North Cascades, 1956-1968

Bergmann, Nicolas Timothy 20 June 2013 (has links)
On March 22, 1958 David Brower's film Wilderness Alps of Stehekin premiered to an audience of conservationists in Seattle, Washington. Almost two years in the making, the thirty-one minute film advocated the preservation of nature in Washington's North Cascades through the creation of a national park. Over the next decade, Wilderness Alps of Stehekin became the most influential publicity tool in the struggle to preserve the North Cascades. Because of the region's geographic isolation, the film was the first time many people throughout the nation were exposed to the scenic grandeur of the area. Images of craggy peaks and colorful alpine meadows resonated deeply with many Americans and persuaded them to join in the campaign. It was the voice of these citizens that led Congress to pass the North Cascades Act of 1968, which placed 674,000 acres of the North Cascades under the jurisdiction of the National Park Service. In this thesis I tell the creation story of North Cascades National Park from a conservationist perspective and trace the influence of Wilderness Alps of Stehekin within this context. Although the film was never shown in movie theaters and never aired on national television, many thousands viewed it from its premiere to the signing of the North Cascades Act. The film first introduced the idea of a North Cascades National Park, and it was important in convincing conservationists to unite around a national park solution. Ultimately, Wilderness Alps of Stehekin changed the approach activists took in the North Cascades and helped to preserve a wild and scenic nature experience for future generations through the protection of old-growth forests and alpine meadows.
9

Constructing a sheeted magmatic complex within the lower arc crust : insights from the Tenpeak pluton, North Cascades, Washington

Chan, Christine F. 19 November 2012 (has links)
The sheeted complex of the ~92 Ma Tenpeak pluton, in the Northern Washington Cascades crystalline core, forms a <1.5-km wide zone with a moderate, NE-dip at the SW margin of the pluton. Sheeted magmatic complexes, such as the one in the Tenpeak pluton, are common in plutons and represent examples of incremental growth of plutons. Though it is widely accepted that plutons are constructed incrementally over prolonged timescales of several million years, it is not clear if and to what degree individual batches of magma interact, the timing and size of each magma pulse, and the role, timing, and location of magmatic differentiation. This project uses a combination of field evidence, bulk rock chemistry, and mineral geochemistry to address the (1) role of magma mixing and fractionation, (2) constraints on the relative timing of magma differentiation, (3) diversity of mixing styles preserved, and (4) physical properties that dictate how individual batches of magma interact within this sheeted complex. Rock samples were collected throughout the complex from mafic, felsic, dioritic, thinly-banded, and gradational sheets. Field evidence shows a range of sheet contacts that vary from sharp to diffuse, strong prevalence of mafic enclaves, and localized cases of mechanical mixing in which plagioclase feldspars from a felsic sheet are incorporated into a mafic sheet. In general, sheet thickness increases farther from the contact with the White River shear zone. The bulk rock and mineral chemistry suggests that the felsic magmas in sheets formed independently from the more mafic and hybridized sheets. The composition of the felsic sheets cannot be modeling by binary mixing processes involving mafic and felsic magmas or result from fractionating the most mafic magmas. However, mass-balance calculations using a linear least-squares mass balance calculation and Rayleigh fractionation models indicate that it is possible to explain the range of felsic compositions by internal, crystal fractionation driven mostly by plagioclase crystallization (~40-58%). Negative Eu anomalies in amphiboles from the felsic sheets imply that plagioclase fractionation commenced prior to the onset of amphibole crystallization. With the exception of the most primitive mafic sheet sampled, the mafic and hybridized sheets represent variable proportions of the mafic parental magma and the range of felsic differentiated magmas. Efficient mixing that resulted in these mafic to hybridized magmas must also have occurred prior to mineral growth as the mineral chemistry reflects intermediate, mixed compositions. The bulk rock and mineral chemistry of the most primitive, mafic sheet suggest that it did not mix with any felsic magmas. However there is evidence that the mafic sheet underwent plagioclase fractionation prior to emplacement. This is evident by lower bulk rock Sr/Ba relative to calculated Sr/Bamelt of plagioclase that cannot be reconciled without removing ~40-58% plagioclase. In contrast to the felsic sheets, the amphiboles from this mafic sheet lack Eu anomalies implying that amphibole crystallization occurred prior to major plagioclase fractionation. Chemical evidence reveals that magma mixing played an important role in controlling the chemical composition of individual sheets and field observations suggesting that there was a range of mixing styles. Throughout the sheeted complex, there are localized sites of mechanical mixing where plagioclase phenocrysts from adjacent felsic sheets are mechanically mixed into mafic sheets. Evidence for mechanical mixing is present across both sharp and gradational contacts. This implies varying rheological and viscosity contrasts between different sheets, though in both cases crystallinity and viscosity appears sufficiently low to allow crystals to migrate across sheet contacts. Variability in sheet thickness and contact type suggests that the physical parameters (i.e. temperature, viscosity, rheology, and magma flux) of the system continue to evolve throughout the formation of the sheeted complex. Near the White River, sheets are thin and more heterogeneous but become progressively thicker (>302 m) and more felsic in composition up-section. The composition of plagioclase and amphibole is remarkably uniform in all of the felsic sheets suggesting that each sheet formed from an array of felsic parental magmas. Thicker, felsic sheets most likely reflect hotter conditions where larger magma fluxes could be accommodated or viscosity-temperature contrasts that were low enough to allow for efficient mixing between two adjacent sheets and therefore erase sheet contacts. / Graduation Date: 2013
10

Windshield wilderness : the automobile and the meaning of national parks in Washington State /

Louter, David. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 266-280).

Page generated in 0.0559 seconds