• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A fluid inclusion and cathodoluminescence approach to reconstruct fracture growth in the Triassic-Jurassic La Boca Formation, Northeastern Mexico

Kaylor, Autumn Leigh 17 February 2012 (has links)
Opening-mode fracture shapes are typically the result of brittle deformation and proportional growth in fracture height, length, and width. Based on the typical fracture shape, it is assumed that fracture tips are free to propagate in all directions. Some natural rock fractures have been shown to form as a result of slow non-elastic deformation processes. Such fractures may propagate to a finite length or height and accommodate further growth by aperture widening only. To determine the growth conditions of a fracture in the Triassic-Jurassic La Boca Formation of northeastern Mexico and to test fracture growth models, I combined fluid inclusion microthermometry and SEM-based cathodoluminescence cement texture analysis to determine the relative timing of fracture cement precipitation and related fracture opening for five samples collected along its trace. Fracture growth initiated at a minimum age of 70 Ma as two separate fractures with branching fracture tips that coalesced to a single continuous fracture under prograde burial conditions at a minimum age of 54 Ma. At this stage, fracture growth was accommodated by both propagation (i.e. increase in trace length) and by an increase in aperture during maximum burial and early exhumation. Samples collected at the fracture tips recorded temperatures reflecting fracture opening starting with maximum burial at a minimum age of 48 Ma at one tip and of 38 Ma at the other tip. Synkinematic fluid inclusions in crack-seal cement track continued fracture opening close to the fracture tips without a concurrent increase in trace length after 38 Ma until about 21 Ma. I attribute the observed change in fracture growth mechanism to a change in material response. The stage in aperture increase without propagation corresponds to an increase in elastic compliance or in non-elastic flow properties. Non-elastic flow can be attributed to solution-precipitation creep of the host rock. Dissolution of host quartz grains and subsequent quartz precipitation is consistent with the abundance of quartz fracture cement formed during exhumation. Cement textures from fractures in the La Boca Formation mimic those found in subsurface core, which allows application of the results to a variety of geologic environments. / text
2

Geologic framework of the Sierra Mojada mining district, Coahuila, Mexico : an integrative study of a Mesozoic platform-basin margin

Gryger, Sean Michael 16 February 2011 (has links)
The geology of the Sierra Mojada silver-lead-zinc mining district gives new insights into the stratigraphic evolution of the Coahuila Block and the Coahuila Folded Belt and the history of deformation along the basement-rooted San Marcos Fault Zone. Sierra Mojada provides the opportunity for substantial data collection relevant to the interaction of regional tectono-stratigraphic elements in a generally data-poor region of northeastern Mexico. Active mineral exploration has produced an extensive database of closely spaced drill core. Expansive underground workings facilitate subsurface geologic mapping. Sierra Mojada is situated at the northwestern edge of two tectono-stratigraphic provinces, the Coahuila Block, to the south, and the Coahuila Folded Belt, to the north. The San Marcos Fault, a west-northwest-trending regional structure extends through Sierra Mojada and is the informal boundary between these two provinces. Sierra Mojada is situated on uplifted and deformed late Paleozoic Ouachita siliciclastic strata intruded by Triassic diorites. This basement is diagnostic of the Coahuila Block. Basement rocks are overlain by an immature conglomerate that is interpreted to be the updip equivalent of the Jurassic La Casita Formation. The stratigraphy of Sierra Mojada principally consists of a continuous succession of Barremian through Albian carbonates unconformably overlying the basal conglomerate. The Barremian-Aptian Cupido Formation locally records deepening conditions from a clastic-influenced evaporitic interior to high energy, open water conditions. The shale and lime mudstone of the La Pena Formation were deposited during a Gulf-wide transgression that signals the end of the Aptian. The Sierra Mojada region of the Coahuila Block was inundated throughout the Aptian and was affected by the late Aptian transgression. The Albian Aurora Formation constitutes the bulk of the Cretaceous section. Sierra Mojada exposes the Aurora shelf rim, progressing from platform margin to shelf rim and platform interior facies. The structural features of Sierra Mojada affect the entire Cretaceous section. The high angle San Marcos Fault was reactivated with reverse motion during the Paleogene as a result of Laramide shortening. This juxtaposed basement and Jurassic conglomerate against the Cretaceous carbonates consistent with offset observed along the southern trace of the San Marcos Fault. A local colluvial unit suggests a lag in Laramide deformation. The carbonate strata and colluvial unit were overridden by a low angle, northeast-dipping thrust fault that placed a Neocomian through Aptian sequence atop the autochthonous Aptian-Albian carbonates. The allochthonous San Marcos Formation suggests regional-scale tectonic transport of this immature fluvial conglomerate from a downdip depozone within the Sabinas Basin. Kinematic indicators are consistent with the southwest-northeast axis for maximum compression established for Paleogene shortening throughout the Coahuila Folded Belt. The thrust fault bisects the principal ore zone within the Lower Aurora and upper La Pena Formations. This relation constrains the minimum age of ore emplacement to the Paleogene and suggests mineralization was genetically tied to the late stages of the Laramide Orogeny. / text

Page generated in 0.0478 seconds