Spelling suggestions: "subject:"northeastern pacific"" "subject:"northeastern acific""
1 |
High resolution dinoflagellate cyst sedimentary records of past oceanographic and climatic history from the Northeastern Pacific over the last millenniumBringué, Manuel Alain 07 August 2015 (has links)
This thesis contributes to the development of dinoflagellate cysts as indicators of past environmental change in the Northeastern Pacific coastal ocean, and investigates past variations in sea-surface temperature, salinity and primary productivity encoded in dinoflagellate cyst sedimentary records from the Santa Barbara Basin (SBB, southern California) and Effingham Inlet (Vancouver Island, British Columbia) over the last millennium. The dinoflagellate cyst records extracted from the SBB and Effingham Inlet predominantly laminated sediments and analysed at sub-decadal resolutions, constitute some of the most detailed records of cyst-producing dinoflagellate populations in the world.
A two year-long sediment trap study from the SBB documents the seasonality in dinoflagellate cyst production for the first time on the Pacific coast of the United States. The study shows that dinoflagellate cyst data can be used as indicators of changes in sea-surface temperature and primary productivity associated with seasonal upwelling in the SBB. In particular, several dinoflagellate cyst taxa such as Brigantedinium spp. and Lingulodinium machaerophorum are identified as indicators of “active upwelling” (typically occurring in spring and early summer) and “relaxed upwelling” conditions (fall and early winter) at the site, respectively.
Analysis of a dinoflagellate cyst record from the SBB spanning the last ~260 years at biannual resolution documents the response of cyst-producing dinoflagellates to instrumentally-measured warming during the 20th century, and reveals decadal scale variations in primary productivity at the site that are coherent with phases of the Pacific Decadal Oscillation (PDO). The cyst assemblages are dominated by cysts produced by heterotrophic dinoflagellates (in particular Brigantedinium spp.), but the turn of the 20th century is marked by an abrupt increase in concentrations of L. machaerophorum and Spiniferites ramosus, two cyst taxa of autotrophic affinity. Their increasing abundances during the 20th century are interpreted to reflect warmer conditions and possibly stronger stratification during summer and fall. The dinoflagellate cyst data suggest a warming pulse in the early 1900s and provide further evidence that persistently warmer and/or more stratified conditions were established by the late 1920s.
The dinoflagellate cyst record from Effingham Inlet, spanning the last millennium, is characterized by the proportionally equal contribution of cysts produced by autotrophic and heterotrophic dinoflagellates in most samples. The cyst data indicate variations in sea-surface temperature, salinity and primary productivity that are associated with local expressions of the Medieval Climate Anomaly (from the base of the record to ~1230), the Little Ice Age (from ~1230 to ~1900) and warming during the second half of the 20th century.
Both dinoflagellate cyst records reveal that since the beginning (in the SBB) and mid-20th century (in Effingham Inlet), autotrophic dinoflagellates contribute to a greater portion of the primary production in the region, whereas heterotrophic dinoflagellates, as indicators of diatom populations, decline. Variability in the dinoflagellate cyst data is coherent at both sites and suggest a reduced expression of decadal scale variability associated with the PDO during the 19th century. / Graduate / 0416 / 0427 / mbringue@uvic.ca
|
2 |
Long term albacore (Thunnus alalunga) spatio-temporal association with environmental variability in the Northeastern PacificPhillips, A. Jason 16 November 2011 (has links)
This study investigated long-term (1961-2008) changes in albacore (Thunnus alalunga) abundance and distribution in relation to local environmental and large-scale climate indices in the Northeastern Pacific using time series and spatial analyses. Prior to the time series analysis, a wavelet analysis was conducted to examine nonrandom patterns of cyclical variability which revealed that monthly and annual time scales had the highest non-random variability. Thus, the time series analysis was done at these two scales using non-linear generalized additive models (GAMs) and threshold GAMs. At the monthly scale, sea surface temperature (SST) was found to be the variable with the strongest (positive) association to albacore catch per unit effort (CPUE). This association was likely driven by the seasonal migrations of juvenile albacore into and out of the U.S. coastal waters. At the yearly time scale over large geographical areas, the SST association broke down, and the scalar wind speed cubed (an indicator of mixed layer depth) at a five year lag became the dominant variable. The scalar wind speed cubed index explained 65% of the variability and was highly significant, even after adjusting for multiple tests (Bonferroni corrected P-value<0.001). These results suggest that a deeper mixed layer in the Northeastern Pacific may provide favorable foraging habitat for juvenile (mostly age 3) albacore, resulting in successful growth, spawning, and recruitment into the fishery in later years. This mixed layer depth association could help managers and stock assessment groups in their efforts to integrate environmental factors into the estimate of albacore population size.
The spatial/spatio-temporal analyses involved modeling the CPUE with four competing GAM formulations, each representative of a different hypotheses for albacore distribution: 1) spatial, 2) spatial and environmental (SST, PDO, and MEI), 3) spatially variant, and 4) nonstationary, as indicated by the North Pacific regime shift of 1977. Results indicate that SST had a predominantly positive but spatially-variable effect on albacore CPUE, while the PDO had a negative overall effect. Specifically, CPUE was found to increase with increased SST, particularly off of Oregon and Washington. These results imply that if ocean temperatures continue to increase, west coast communities reliant on commercial albacore fisheries are likely to be negatively impacted in the southern areas but positively benefited in the northern areas, where current albacore landings are highest. / Graduation date: 2012
|
Page generated in 0.0814 seconds