Spelling suggestions: "subject:"nosema api"" "subject:"nosema apps""
1 |
The therapeutic value of fumagillin in the control of the protozoan parasite Nosema apis Zander in the honey beeCmejla, Howard Edward, January 1954 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1954. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 103-111).
|
2 |
Use of Fish Cell Cultures for the Study and Cultivation of MicrosporidiaMader Monaghan, S. Richelle January 2011 (has links)
Microsporidia are a group of obligate intracellular fungal parasites that infect a wide range of vertebrates and invertebrates, and are of economic and academic interest. Some areas of their economic impact are in aquaculture where they can infect salmon and other fish species. In agriculture they have been considered as control agents for insect pests, but more importantly as likely contributing to colony collapse disorder of bees. As an academic topic, microsporidia are fascinating because they are the smallest and simplest eukaryotic cells and require eukaryotic host cells in order to complete their life cycle. Therefore one research avenue that moves forward both economic and academic interests is to use cultures of animal cells to support the growth and development of the microsporidia life cycle, including the production of spores.
Although the use of animal cell cultures for studying the microsporidia of insect and mammals has a fairly large literature, fish cell cultures have been employed less often but have had some successes as reviewed in this thesis. Very short-term primary cultures have been used to show how microsporidia spores can modulate the activities of phagocytes. The most successful microsporidia/fish cell culture system has been relatively long-term primary cultures of salmonid leukocytes for culturing Nucleospora salmonis. Surprisingly, this system can also support the development of Enterocytozoon bienusi, which is of mammalian origin. Some modest success has been achieved in growing Pseudoloma neurophilia on several different fish cell lines. The eel cell line, EP-1, appears to be the only published example of any fish cell line being permanently infected with microsporidia, in this case Heterosporis anguillarum. These cell culture approaches promise to be valuable for describing the growth and development of the microsporidia and for documenting the responses of fish cells to infection.
In this thesis, cell lines from warm water fish, goldfish, fathead minnow and zebrafish, and a coldwater species, rainbow trout, were explored as potential cellular hosts of two microsporidia species that have never been grown or associated with fish before. One is Anncaliia algerae, which is an aquatic microsporidium that most commonly infects mosquitoes. This microsporidia is one of the easiest species to grow in mammalian cells, with the rabbit kidney cell line, RK 13, being the most documented culture system. The other is Nosema apis, which is a pathogen of bees and for which few cell culture systems exist.
The ability of warm water fish cell lines to support the life cycle of A. algerae was investigated first. Spores were purified from RK-13 cultures and added to cell lines from three warm water species as well as to an insect cell line. The cell lines were GFSK-S1 and GFB3C- W1 from goldfish skin and brain respectively, ZEB2J from zebrafish embryos, FHMT-W1 from fathead minnow testis, and Sf9 from ovaries of a fall armyworm moth. All cultures were maintained at 27 °C. Infection was judged to have taken place by the appearance of sporonts and/or spores in cells and occurred in all cell lines. Spores were also isolated from ZEB2J cultures and used to successfully infect new cultures of ZEB2J, RK-13 and Sf9. These results suggest that cells of a wide range of vertebrates support A. algerae growth in vitro and fish cells can produce spores infectious to cells of mammals, fish and insects. As ZEB2J was the most characterized of the fish cell lines and supported good A. algerae growth, this cell line was used in further studies described below to compare the efficacy of antimicrosporidial drugs and to test whether fish cells could support N. apis growth, but first A. algerae growth at lower temperatures was explored with cell lines from a coldwater fish.
Cultures of cell lines from rainbow trout gill, RTgill-W1, and brain, RTbrain-W1, at 9, 18 and 21°C were evaluated for their ability to support the development of A. algerae. For up to 8 days after the addition of spores, living and DAPI stained cultures were examined by phase-contrast microscopy, allowing the identification of the meront, sporont, and spore stages in cultures at 18 and 21 °C. Meronts and sporonts were both spindle-shaped, but relative to meronts, sporonts were darker under phase contrast and brighter after DAPI staining. Spores were egg-shaped, phase- bright and intensely DAPI stained. These stages could not be identified conclusively in cultures at 9 °C, but their appearance at 18 °C sets a new low temperature for the growth of this species. The growth of A. algerae at room temperature allowed living cultures to be observed conveniently and videoed with a proprietary instrument, the Riveal microscope (www.quorumtechnologies.com). With this microscope, the development of A. algerae life cycle stages at room temperature was confirmed plus for the first time meront division and intracellular germination were captured on video. Spore germination in the absence of host cells and in response to 3 percent hydrogen peroxide was also observed by Riveal microscopy and for first time an abnormal germination phenomenon was clearly documented: polar tubes were extruded but the spore bodies retained the nuclei.
ZEB2J cultures that had been infected with Anncaliia algerae spores were used as an in vitro test system to evaluate the curative actions of albendazole, fumagillin, and three fluoroquinolones; ciprofloxacin, norfloxacin, and ofloxacin. For each drug at concentrations above 50 µg/ml, the viability of ZEB2J cell declined sharply so concentrations of 10 and 20 µg/ml were studied. At these concentrations the drugs had little effect on the morphology and germination A. algerae spores. Each of the fluoroquinolones failed to prevent A. algerae from infecting ZEB2J cells and from growing to the same extent as in untreated ZEB2J cultures. Adding albendazole or fumagillin to cultures did not prevent A. algerae from infecting ZEB2J cells but impeded the growth and accumulation of A. algerae life-cycle stages. However, albendazole treatments caused a significant fraction of the ZEB2J cells to have nuclear abnormalities. Fumagillin reduced the intensity of infections within a ZEB2J cell, although the number of infected cells in a culture was not reduced. Over 5 days of infection with A. algerae the accumulation of ZEB2J cells in cultures was reduced but fumagillin treatment restored the accumulation to control levels. These results suggest that fumagillin has some potential as a treatment for A. algerae infections.
ZEB2J was exposed to Nosema apis spores from the western honey bee (Apis mellifera). Bees were collected from hives that had been naturally infected and confirmed polymerase chain reaction (PCR) to have N. apis. Frozen bees were crushed in water to yield a mixture of bee parts, pollen grains, yeast, and microsporidial spores. The mixture was filtered and then centrifuged through Percoll to produce a pellet of spores that was resuspended in L-15 with 10 percent fetal bovine serum (FBS). Aliquots of this were added to ZEB2J cultures. Cultures were observed periodically for up to 24 days with a combination of phase contrast microscopy and of fluorescence microscopy, usually after staining with 4’,6-diamidino-2-phenylindole (DAPI). Although earlier life cycle stages were not observed, structures that were concluded to be either sporonts, sporoblasts and/or spores were seen, but these were in less than 5 percent of the fish cells. These N. apis life cycle stages had grown in ZEB2J because some appeared to be inside the cells and often they were arranged around the nucleus of the host cell rather than being randomly distributed in cultures. Despite repeated rinsing over a three week period, all cultures were ultimately lost due to yeast from the original spore preparations over growing the fish cell cultures.
The overarching observation of this thesis is that fish cells in culture have been shown for the first time to support the growth A. algerae, and possibly N. apis. This suggests that the cells of vertebrates might support the growth of a wide range of microsporidia species that normally are associated with insects. In turn this suggests restriction of a microsporidial species to a particular animal group is unlikely accomplished at the cellular level but through physiological systems expressed at the organismal level and disturbances in these systems might lead to infections in new groups of animal hosts. The overarching observation of this thesis has two general implications for future studies. Firstly, for studying the expression of antimicrosporidia mechanisms in fish cells, the ZEB2J/A. algerae co-culture system promises to be useful. Secondly, for microsporidia species that are difficult to grow in culture, cell lines from a wide range of vertebrate and invertebrate species should be explored and one possibility for N. apis is fish cells.
|
3 |
Use of Fish Cell Cultures for the Study and Cultivation of MicrosporidiaMader Monaghan, S. Richelle January 2011 (has links)
Microsporidia are a group of obligate intracellular fungal parasites that infect a wide range of vertebrates and invertebrates, and are of economic and academic interest. Some areas of their economic impact are in aquaculture where they can infect salmon and other fish species. In agriculture they have been considered as control agents for insect pests, but more importantly as likely contributing to colony collapse disorder of bees. As an academic topic, microsporidia are fascinating because they are the smallest and simplest eukaryotic cells and require eukaryotic host cells in order to complete their life cycle. Therefore one research avenue that moves forward both economic and academic interests is to use cultures of animal cells to support the growth and development of the microsporidia life cycle, including the production of spores.
Although the use of animal cell cultures for studying the microsporidia of insect and mammals has a fairly large literature, fish cell cultures have been employed less often but have had some successes as reviewed in this thesis. Very short-term primary cultures have been used to show how microsporidia spores can modulate the activities of phagocytes. The most successful microsporidia/fish cell culture system has been relatively long-term primary cultures of salmonid leukocytes for culturing Nucleospora salmonis. Surprisingly, this system can also support the development of Enterocytozoon bienusi, which is of mammalian origin. Some modest success has been achieved in growing Pseudoloma neurophilia on several different fish cell lines. The eel cell line, EP-1, appears to be the only published example of any fish cell line being permanently infected with microsporidia, in this case Heterosporis anguillarum. These cell culture approaches promise to be valuable for describing the growth and development of the microsporidia and for documenting the responses of fish cells to infection.
In this thesis, cell lines from warm water fish, goldfish, fathead minnow and zebrafish, and a coldwater species, rainbow trout, were explored as potential cellular hosts of two microsporidia species that have never been grown or associated with fish before. One is Anncaliia algerae, which is an aquatic microsporidium that most commonly infects mosquitoes. This microsporidia is one of the easiest species to grow in mammalian cells, with the rabbit kidney cell line, RK 13, being the most documented culture system. The other is Nosema apis, which is a pathogen of bees and for which few cell culture systems exist.
The ability of warm water fish cell lines to support the life cycle of A. algerae was investigated first. Spores were purified from RK-13 cultures and added to cell lines from three warm water species as well as to an insect cell line. The cell lines were GFSK-S1 and GFB3C- W1 from goldfish skin and brain respectively, ZEB2J from zebrafish embryos, FHMT-W1 from fathead minnow testis, and Sf9 from ovaries of a fall armyworm moth. All cultures were maintained at 27 °C. Infection was judged to have taken place by the appearance of sporonts and/or spores in cells and occurred in all cell lines. Spores were also isolated from ZEB2J cultures and used to successfully infect new cultures of ZEB2J, RK-13 and Sf9. These results suggest that cells of a wide range of vertebrates support A. algerae growth in vitro and fish cells can produce spores infectious to cells of mammals, fish and insects. As ZEB2J was the most characterized of the fish cell lines and supported good A. algerae growth, this cell line was used in further studies described below to compare the efficacy of antimicrosporidial drugs and to test whether fish cells could support N. apis growth, but first A. algerae growth at lower temperatures was explored with cell lines from a coldwater fish.
Cultures of cell lines from rainbow trout gill, RTgill-W1, and brain, RTbrain-W1, at 9, 18 and 21°C were evaluated for their ability to support the development of A. algerae. For up to 8 days after the addition of spores, living and DAPI stained cultures were examined by phase-contrast microscopy, allowing the identification of the meront, sporont, and spore stages in cultures at 18 and 21 °C. Meronts and sporonts were both spindle-shaped, but relative to meronts, sporonts were darker under phase contrast and brighter after DAPI staining. Spores were egg-shaped, phase- bright and intensely DAPI stained. These stages could not be identified conclusively in cultures at 9 °C, but their appearance at 18 °C sets a new low temperature for the growth of this species. The growth of A. algerae at room temperature allowed living cultures to be observed conveniently and videoed with a proprietary instrument, the Riveal microscope (www.quorumtechnologies.com). With this microscope, the development of A. algerae life cycle stages at room temperature was confirmed plus for the first time meront division and intracellular germination were captured on video. Spore germination in the absence of host cells and in response to 3 percent hydrogen peroxide was also observed by Riveal microscopy and for first time an abnormal germination phenomenon was clearly documented: polar tubes were extruded but the spore bodies retained the nuclei.
ZEB2J cultures that had been infected with Anncaliia algerae spores were used as an in vitro test system to evaluate the curative actions of albendazole, fumagillin, and three fluoroquinolones; ciprofloxacin, norfloxacin, and ofloxacin. For each drug at concentrations above 50 µg/ml, the viability of ZEB2J cell declined sharply so concentrations of 10 and 20 µg/ml were studied. At these concentrations the drugs had little effect on the morphology and germination A. algerae spores. Each of the fluoroquinolones failed to prevent A. algerae from infecting ZEB2J cells and from growing to the same extent as in untreated ZEB2J cultures. Adding albendazole or fumagillin to cultures did not prevent A. algerae from infecting ZEB2J cells but impeded the growth and accumulation of A. algerae life-cycle stages. However, albendazole treatments caused a significant fraction of the ZEB2J cells to have nuclear abnormalities. Fumagillin reduced the intensity of infections within a ZEB2J cell, although the number of infected cells in a culture was not reduced. Over 5 days of infection with A. algerae the accumulation of ZEB2J cells in cultures was reduced but fumagillin treatment restored the accumulation to control levels. These results suggest that fumagillin has some potential as a treatment for A. algerae infections.
ZEB2J was exposed to Nosema apis spores from the western honey bee (Apis mellifera). Bees were collected from hives that had been naturally infected and confirmed polymerase chain reaction (PCR) to have N. apis. Frozen bees were crushed in water to yield a mixture of bee parts, pollen grains, yeast, and microsporidial spores. The mixture was filtered and then centrifuged through Percoll to produce a pellet of spores that was resuspended in L-15 with 10 percent fetal bovine serum (FBS). Aliquots of this were added to ZEB2J cultures. Cultures were observed periodically for up to 24 days with a combination of phase contrast microscopy and of fluorescence microscopy, usually after staining with 4’,6-diamidino-2-phenylindole (DAPI). Although earlier life cycle stages were not observed, structures that were concluded to be either sporonts, sporoblasts and/or spores were seen, but these were in less than 5 percent of the fish cells. These N. apis life cycle stages had grown in ZEB2J because some appeared to be inside the cells and often they were arranged around the nucleus of the host cell rather than being randomly distributed in cultures. Despite repeated rinsing over a three week period, all cultures were ultimately lost due to yeast from the original spore preparations over growing the fish cell cultures.
The overarching observation of this thesis is that fish cells in culture have been shown for the first time to support the growth A. algerae, and possibly N. apis. This suggests that the cells of vertebrates might support the growth of a wide range of microsporidia species that normally are associated with insects. In turn this suggests restriction of a microsporidial species to a particular animal group is unlikely accomplished at the cellular level but through physiological systems expressed at the organismal level and disturbances in these systems might lead to infections in new groups of animal hosts. The overarching observation of this thesis has two general implications for future studies. Firstly, for studying the expression of antimicrosporidia mechanisms in fish cells, the ZEB2J/A. algerae co-culture system promises to be useful. Secondly, for microsporidia species that are difficult to grow in culture, cell lines from a wide range of vertebrate and invertebrate species should be explored and one possibility for N. apis is fish cells.
|
4 |
Caracterización de un aceite esencial obtenido desde una especie vegetal nativa con efecto antifúngico frente a patógenos emergentes en el sector apícola, Nosema apis y Nosema ceranaeBravo Garrido, Jessica Andrea January 2014 (has links)
Tesis presentada a la Universidad de Chile para optar al grado de Doctor en Ciencias Farmacéuticas / Autorizada por el autor, pero con restricción para ser publicada a texto completo hasta diciembre de 2016, en el Portal de Tesis Electrónicas / Conicyt
Mecesup
|
5 |
Infestace včelstev Nosema spp. v průběhu roku v různých lokalitáchDURČANSKÝ, Pavel January 2019 (has links)
The nosem infection is a worldwide spread bee illness caused by two microsporidia (Nosema apis and Nosema ceranae). The aim of this thesis is to follow the occurrence of Nosema spp. and density of infection in the selected bee colonies considering the relation between N. apis, N. ceranae, climatic conditions and the condition of each bee colony concerned. In my thesis, I have used two ways of originator identification. The first was microscopy, using which we have discovered significant changes in the number of spores in one bee colony within one year. After the experiment had finished, we evaluated the number of measured spores in connection with the outside temperature, humidity, number of colonized frames, extenders, gentleness of bees and their sitting on the honey combs. The second way was using the PCR method. Through this method we have identified the percentage of positive bee colonies on the selected locations. Furthermore, we have confirmed the occurrence of each of the originators and evaluated if there is a mutual influence of Nosema spp. between bee colonies.
|
6 |
The occurrence of Nosema apis (Zander), Acarapis woodi (Rennie), and the Cape problem bee in the summer rainfall region of South AfricaSwart, Dawid Johannes January 2004 (has links)
The occurrence of Nosema disease, tracheal mites and the “pseudo-parasitic” behaviour of Cape honeybee workers when placed amongst African honeybees – known as the Cape Bee Problem – were studied over a 18 month period. Three surveys, approximately 6 months apart were done. The aims of this study were to establish the distribution and severity of the diseases and compare the disease with the presence of the Cape Bee Problem. Before this survey commenced European Foul Brood disease, Sacbrood (virus), Nosema, Brood nosema, and Tracheal mite have sporadically been reported in the summer rainfall region of South Africa. In the first survey 1005 colonies in 61 apiaries were surveyed, 803 colonies in 57 apiaries in the second, and 458 colonies in 41 apiaries in the third. Samples for disease and parasite analysis were taken at 4 colonies per apiary. Ten colonies per apiary were inspected for Cape Problem Bees, and samples of workers were collected and dissected at each of these colonies. Even with the addition of apiaries to 'fill-up' lost colonies during the second survey, 63% of all colonies were lost by the third survey. There was only a small difference in colony loss between sedentary and migratory beekeepers of 22% compared to 27%. Nosema was more prevalent amongst commercial beekeepers and increased in migratory operations during the survey period. The percentage of colonies infected increased during the survey period from 23% to 32% to 34%. The placement of colonies in Eucalyptus plantations may boost infection. Trachea mites seem to have spread quite rapidly in South Africa since its discovery. This parasitic mite was present in all regions, although in low numbers in three most northern regions. Sedentary colonies had higher levels of infestation than migratory colonies. The number of colonies infested diminished over the survey period, which may be a result of general colony loss. The Cape Problem Bee was less of a problem than anticipated. Colonies succumbed to Cape Problem Bees in all regions. When beekeepers reported high levels of infestation in their bee stocks the colonies would be dead within six months. In apiaries with low infestation the die-out was slower.
|
7 |
NOSEMA CERANAE IN WESTERN HONEY BEES (APIS MELLIFERA): BIOLOGY AND MANAGEMENTWilliams, Geoffrey Rhys 27 March 2013 (has links)
Western honey bees (Apis mellifera; hereafter honey bees) provide vital pollination services to global agriculture and biodiversity. However in recent years they have experienced severe population declines in many regions of the northern hemisphere. Although causes of these honey bee declines are not well understood, multiple pressures such as changes in land-use and climate, management issues, and introduced parasites are believed to be responsible. First described in honey bees in 2006 during a period of high colony mortalities, the microsporidian gut parasite Nosema ceranae became of great concern. In this dissertation I investigated the distribution, management, virulence, and inter-specific interactions of this introduced species. First, I described and clarified the multiple pressures believed to influence honey bee health, including N. ceranae, especially in relation to the mysterious phenomenon Colony Collapse Disorder. I then surveyed colonies in Maritime Canada for N. ceranae and the historic honey bee microsporidian Nosema apis. Although both species were present at a regional scale, intensive sampling in Nova Scotia revealed that N. ceranae was highly prevalent compared to the historic congener. Next, I investigated two potential management options for the parasite. Chemotherapy using the fungicide fumagillin reduced N. ceranae spore intensity but had no effect on colony survival, and indoor over-wintering did not reduce spore intensity but was associated with increased colony survivorship in spring. Using a comparative approach, I observed that N. ceranae infection significantly reduced honey bee longevity in the laboratory but did not influence overall colony health or strength in the field. Last, a laboratory study demonstrated reduced spore production during N. ceranae and N. apis co-infection, possibly due to inter-specific competition that has resulted in the displacement of the historic Nosema species by N. ceranae in many global regions. This dissertation provides crucial information on biology and management of N. ceranae that can be used towards the development of an integrated pest management strategy, and for future studies investigating factors that may influence the parasite’s distribution, virulence, and inter-specific interactions.
|
8 |
Výskyt parazitických mikroorganismů u oslabených a zdravých populací včely medonosné (Apis mellifera ) / The parasitic microorganisms in immunodeficient and healthy population of honebees (Apis mellifra)Bičianová, Martina January 2015 (has links)
Immunodeficient honey bee (Apis mellifera) colonies suffer from broad range of parasites including eukaryotic protozoa. Despite this fact, the eukaryotic parasites are still poorly documented in the Czech Republic. The presence of eukaryotic parasites (Nosema ceranae, Nosema apis, Crithidia mellificae and Apicystis bombi) was observed in different apiaries in the Czech Republic. The samples were taken in 9 apiaries in 53 beehives during the 2014/2015 season. From each beehive, 10 adult of honey bees were taken from the peripheral comb in triplicate. DNA was isolated from every sample of honey bees. The parasites were detected by polymerase chain reaction (PCR) with specific primers. The treatment fall of parasitic mite Varroa destructor was obtained from beekeepers for season of 2014. Crithidia mellificae was detected by 5 types of specific primers (SEF, SER; SSU, SSU rRNA, Cyt b, Tryp cyt b) and positive amplicons were cloned and sequenced. The obtained sequences were compared with GeneBank and showed similarity from 98-100% to sequences of Lotmaria passim (Trypanosomatid). Crithidia mellificae was not detected. L. passim had prevalence of 79,2% and is reported in the Czech Republic for the first time. Primer Tryp-cyt b is recommended for the routine detection of L. passim. Nosema ceranae was...
|
Page generated in 0.0595 seconds