1 |
GATAD2B-Associated Neurodevelopmental Disorder (GAND): Clinical and Molecular Insights Into a NuRD-Related DisorderShieh, Christine, Jones, Natasha, Vanle, Brigitte, Au, Margaret, Huang, Alden Y., Silva, Ana P.G., Lee, Hane, Douine, Emilie D., Otero, Maria G., Choi, Andrew, Grand, Katheryn, Taff, Ingrid P., Delgado, Mauricio R., Hajianpour, M. J., Seeley, Andrea, Rohena, Luis, Vernon, Hilary, Gripp, Karen W., Vergano, Samantha A., Mahida, Sonal, Naidu, Sakkubai, Sousa, Ana Berta, Wain, Karen E., Challman, Thomas D., Beek, Geoffrey, Basel, Donald, Ranells, Judith, Smith, Rosemarie 01 May 2020 (has links)
Purpose: Determination of genotypic/phenotypic features of GATAD2B-associated neurodevelopmental disorder(GAND). Methods: Fifty GAND subjects were evaluated to determine consistentgenotypic/phenotypic features. Immunoprecipitation assays utilizing in vitrotranscription–translation products were used to evaluate GATAD2B missensevariants’ ability to interact with binding partners within the nucleosomeremodeling and deacetylase (NuRD) complex. Results: Subjects had clinical findings that included macrocephaly,hypotonia, intellectual disability, neonatal feeding issues, polyhydramnios,apraxia of speech, epilepsy, and bicuspid aortic valves. Forty-one novelGATAD2B variants were identified withmultiple variant types (nonsense, truncating frameshift, splice-site variants,deletions, and missense). Seven subjects were identified with missense variantsthat localized within two conserved region domains (CR1 or CR2) of the GATAD2Bprotein. Immunoprecipitation assays revealed several of these missense variantsdisrupted GATAD2B interactions with its NuRD complex binding partners. Conclusions: A consistent GAND phenotype was caused by a range of geneticvariants in GATAD2B that includeloss-of-function and missense subtypes. Missense variants were present inconserved region domains that disrupted assembly of NuRD complex proteins.GAND’s clinical phenotype had substantial clinical overlap with other disordersassociated with the NuRD complex that involve CHD3 and CHD4, with clinicalfeatures of hypotonia, intellectual disability, cardiac defects, childhoodapraxia of speech, and macrocephaly.
|
2 |
Mi-2 chromatin remodeling factor functions in sensory organ development through proneural gene repression in DrosophilaYAMASAKI, Yasutoyo, NISHIDA, Yasuyoshi January 2006 (has links)
No description available.
|
3 |
PIE-1, SUMOylation, and Epigenetic Regulation of Germline Specification in Caenorhabditis elegansKim, Heesun 10 July 2018 (has links)
In many organisms, the most fundamental event during embryogenesis is differentiating between germline cells and specialized somatic cells. In C. elegans, PIE-1 functions to protect the germline from somatic differentiation and appears to do so by blocking transcription and by preventing chromatin remodeling in the germline during early embryogenesis. Yet the molecular mechanisms by which PIE-1 specifies germline remain poorly understood. Our work shows that SUMOylation facilitates PIE-1-dependent germline maintenance and specification. In vivo SUMO purification in various CRISPR strains revealed that PIE-1 is SUMOylated at lysine 68 in the germline and that this SUMOylation is essential for forming NuRD complex and preserving HDA-1 activity. Moreover, HDA-1 SUMOylation is dependent on PIE-1 and enhanced by PIE-1 SUMOylation, which is required for protecting germline integrity. Our results suggest the importance of SUMOylation in the germline maintenance and exemplify simultaneous SUMOylation of proteins in the same functional pathway.
|
Page generated in 0.0318 seconds