• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • Tagged with
  • 12
  • 12
  • 12
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Advanced microstructured semiconductor neutron detectors: design, fabrication, and performance

Bellinger, Steven Lawrence January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / Douglas S. McGregor / The microstructured semiconductor neutron detector (MSND) was investigated and previous designs were improved and optimized. In the present work, fabrication techniques have been refined and improved to produce three-dimensional microstructured semiconductor neutron detectors with reduced leakage current, reduced capacitance, highly anisotropic deep etched trenches, and increased signal-to-noise ratios. As a result of these improvements, new MSND detection systems function with better gamma-ray discrimination and are easier to fabricate than previous designs. In addition to the microstructured diode fabrication improvement, a superior batch processing backfill-method for 6LiF neutron reactive material, resulting in a nearly-solid backfill, was developed. This method incorporates a LiF nano-sizing process and a centrifugal batch process for backfilling the nanoparticle LiF material. To better transition the MSND detector to commercialization, the fabrication process was studied and enhanced to better facilitate low cost and batch process MSND production. The research and development of the MSND technology described in this work includes fabrication of variant microstructured diode designs, which have been simulated through MSND physics models to predict performance and neutron detection efficiency, and testing the operational performance of these designs in regards to neutron detection efficiency, gamma-ray rejection, and silicon fabrication methodology. The highest thermal-neutron detection efficiency reported to date for a solid-state semiconductor detector is presented in this work. MSNDs show excellent neutron to gamma-ray (n/γ) rejection ratios, which are on the order of 106, without significant loss in thermal-neutron detection efficiency. Individually, the MSND is intrinsically highly sensitive to thermal neutrons, but not extrinsically sensitive because of their small size. To improve upon this, individual MSNDs were tiled together into a 6x6-element array on a single silicon chip. Individual elements of the array were tested for thermal-neutron detection efficiency and for the n/γ reject ratio. Overall, because of the inadequacies and costs of other neutron detection systems, the MSND is the premier technology for many neutron detection applications.
12

Lithiated ternary compounds for neutron detectors: material production and device characterization of lithium zinc phosphide and lithium zinc arsenide

Montag, Benjamin W. January 1900 (has links)
Doctor of Philosophy / Mechanical and Nuclear Engineering / Douglas S. McGregor / There is a need for compact, rugged neutron detectors for a variety of applications including national security and oil well logging. A solid form neutron detector would have a higher efficiency than present day gas filled ³He and ¹⁰BF ₃ detectors, which are standards currently used in the industry today. A sub-branch of the III-V semiconductors is the filled tetrahedral compounds, known as Nowotny-Juza compounds (A[superscript I]B[superscript II]C[superscript V]). These materials are desirable for their cubic crystal structure and semiconducting electrical properties. Originally studied for photonic applications, Nowotny-Juza compounds have not been fully developed and characterized. Nowotny-Juza compounds are being studied as neutron detection materials here, and the following work is a study of LiZnP and LiZnAs material development and device characterization. Precursor binaries and ternary materials of LiZnAs and LiZnP were synthesized in-house in vacuum sealed quartz ampoules with a crucible lining. Synthesized powders were characterized by x-ray diffraction, where lattice constants of 5.751 ± .001 Å and 5.939 ± .002 Å for LiZnP and LiZnAs, respectively, were determined. A static vacuum sublimation in quartz was performed to help purify the synthesized ternary material. The resulting material from the sublimation process showed characteristics of a higher purity ternary compound. Bulk crystalline samples were grown from the purified material. Ingots up to 9.0 mm in diameter and 13.0 mm in length were harvested. Individual samples were characterized for crystallinity on a Bruker AXS Inc. D2 CRYSO, energy dispersive x-ray diffractometer, and a Bruker AXS D8 DISCOVER, high-resolution x-ray diffractometer with a 0.004° beam divergence. High-resolution XRD measurements indicated reasonable out-of-plane and in-plane ordering of LiZnP and LiZnAs crystals. Devices were fabricated from the LiZnP and LiZnAs crystals. Resistivity of devices were determined within the range of 10⁶ – 10¹¹ Ω cm. Charge carrier mobility and mean free drift time products were characterized for electrons at 8.0 x 10⁻⁴ cm² V⁻¹ ± 4.8% and 9.1 x 10⁻⁴ cm² V⁻¹ ± 4.4% for LiZnP and LiZnAs respectively. Sensitivity to 337 nm laser light (3.68 eV photons) was observed, where an absorption coefficient of 0.147 mm⁻¹ was determined for LiZnAs devices. Thermal neutron sensitivity was evaluated with unpurified and purified LiZnP and LiZnAs devices. Sensitivity was observed, however material quality and crystalline quality significantly hindered device performance.

Page generated in 0.0951 seconds