• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calorimetry of 'red-oil reactions'

Glossop, Michael William January 1999 (has links)
No description available.
2

Safeguards Envelope Methodology

Metcalf, Richard 2011 December 1900 (has links)
Nuclear safeguards are intrinsic and extrinsic features of a facility which reduce probability of the successful acquisition of special nuclear material (SNM) by hostile actors. Future bulk handling facilities in the United States will include both domestic and international safeguards as part of a voluntary agreement with the International Atomic Energy Agency. A new framework for safeguards, the Safeguards Envelope Methodology, is presented. A safeguards envelope is a set of operational and safeguards parameters that define a range, or “envelope,” of operating conditions that increases confidence as to the location and assay of nuclear material without increasing costs from security or safety. Facilities operating within safeguards envelopes developed by this methodology will operate with a higher confidence, a lower false alarm rate, and reduced safeguards impact on the operator. Creating a safeguards envelope requires bringing together security, safety, and safeguards best practices. This methodology is applied to an example facility, the Idaho Chemical Processing Plant. An example diversion scenario in the front-end of this nuclear reprocessing facility, using actual operating data, shows that the diversion could have been detected more easily by changing operational parameters, and these changed operational parameters would not sacrifice the operational efficiency of the facility, introduce security vulnerabilities, or create a safety hazard.
3

Zeolite membranes for the separation of krypton and xenon from spent nuclear fuel reprocessing off-gas

Crawford, Phillip Grant 13 January 2014 (has links)
The goal of this research was to identify and fabricate zeolitic membranes that can separate radioisotope krypton-85 (half-life 10.72 years) and xenon gas released during spent nuclear fuel reprocessing. In spent nuclear fuel reprocessing, fissionable plutonium and uranium are recovered from spent nuclear fuel and recycled. During the process, krypton-85 and xenon are released from the spent nuclear fuel as process off-gas. The off-gas also contains NO, NO2, 129I, 85Kr, 14CO2, tritium (as 3H2O), and air and is usually vented to the atmosphere as waste without removing many of the radioactive components, such as 85Kr. Currently, the US does not reprocess spent nuclear fuel. However, as a member of the International Framework for Nuclear Energy Cooperation (IFNEC, formerly the Global Nuclear Energy Partnership), the United States has partnered with the international nuclear community to develop a “closed” nuclear fuel cycle that efficiently recycles all used nuclear fuel and safely disposes all radioactive waste byproducts. This research supports this initiative through the development of zeolitic membranes that can separate 85Kr from nuclear reprocessing off-gas for capture and long-term storage as nuclear waste. The implementation of an 85Kr/Xe separation step in the nuclear fuel cycle yields two main advantages. The primary advantage is reducing the volume of 85Kr contaminated gas that must be stored as radioactive waste. A secondary advantage is possible revenue generated from the sale of purified Xe. This research proposed to use a zeolitic membrane-based separation because of their molecular sieving properties, resistance to radiation degradation, and lower energy requirements compared to distillation-based separations. Currently, the only commercial process used to separate Kr and Xe is cryogenic distillation. However, cryogenic distillation is very energy intensive because the boiling points of Kr and Xe are -153 °C and -108 °C, respectively. The 85Kr/Xe separation step was envisioned to run as a continuous cross-flow filtration process (at room temperature using a transmembrane pressure of about 1 bar) with a zeolite membrane separating krypton-85 into the filtrate stream and concentrating xenon into the retentate stream. To measure process feasibility, zeolite membranes were synthesized on porous α-alumina support discs and permeation tested in dead-end filtration mode to measure single-gas permeance and selectivity of CO2, CH4, N2, H2, He, Ar, Xe, Kr, and SF6. Since the kinetic diameter of krypton is 3.6 Å and xenon is 3.96 Å, zeolites SAPO-34 (pore size 3.8 Å) and DDR (pore size 3.6 Å) were studied because their pore sizes are between or equal to the kinetic diameters of krypton and xenon; therefore, Kr and Xe could be separated by size-exclusion. Also, zeolite MFI (average pore size 5.5 Å) permeance and selectivity were evaluated to produce a baseline for comparison, and amorphous carbon membranes (pore size < 5 Å) were evaluated for Kr/Xe separation as well. After permeation testing, MFI, DDR, and amorphous carbon membranes did not separate Kr and Xe with high selectivity and high Kr permeance. However, SAPO-34 zeolite membranes were able to separate Kr and Xe with an average Kr/Xe ideal selectivity of 11.8 and an average Kr permeance of 19.4 GPU at ambient temperature and a 1 atm feed pressure. Also, an analysis of the SAPO-34 membrane defect permeance determined that the average Kr/Xe selectivity decreased by 53% at room temperature due to unselective defect permeance by Knudsen diffusion. However, sealing the membrane defects with polydimethylsiloxane increased Kr/Xe selectivity by 32.8% to 16.2 and retained a high Kr membrane permeance of 10.2 GPU at ambient temperature. Overall, this research has shown that high quality SAPO-34 membranes can be consistently fabricated to achieve a Kr/Xe ideal selectivity >10 and Kr permeance >10 GPU at ambient temperature and 1 atm feed pressure. Furthermore, a scale-up analysis based on the experimental results determined that a cross-flow SAPO-34 membrane with a Kr/Xe selectivity of 11.8 and an area of 4.2 m2 would recover 99.5% of the Kr from a 1 L/min feed stream containing 0.09% Kr and 0.91% Xe at ambient temperature and 1 atm feed pressure. Also, the membrane would produce a retentate stream containing 99.9% Xe. Based on the SAPO-34 membrane analysis results, further research is warranted to develop SAPO-34 membranes for separating 85Kr and Xe.
4

Iodine Isotopes (129I and 127I) in the Baltic Sea   : Tracer applications &amp; environmental impact

Yi, Peng January 2012 (has links)
129I is a radioactive isotope (T1/2= 15.7 million years) produced through natural and anthropogenic pathways, but the anthropogenic production is presently dominating the Earth’s surface environments. Sparse data from previous investigations in the Baltic Sea clearly indicated the occurrence of 129I at levels 3-4 orders higher than natural pre-atomic era (before 1940) without comprehensive evaluation of distribution and inventory. In this thesis extensive data on the distribution and inventory of iodine isotopes, 129I and 127I, and their species in waters of the Baltic Sea, Kattegat and Skagerrak are presented and used for estimation of water masses exchange and impact on the environment.  To fulfill these objectives seawater samples were collected in August 2006 and April 2007 in the Baltic Proper, Kattegat and Skagerrak as well as in December 2009 in the Bothnian Sea. After elaborative chemical separation of total iodine and iodine species, the analysis was performed using ICP-MS for 127I and AMS for 129I. The results reveal considerable differences in 129I concentration in terms of spatial and temporal variability and expose relatively high concentrations in the deep waters. Inventory estimates show higher amounts of 129I in August 2006 (24.2 ±15.4 kg) than in April 2007 (14.4± 8.3 kg) within the southern and central Baltic Proper, whereas almost a constant inventory is found in the Kattegat Basin. Relatively high 127I-/127IO3- and 129I-/129IO3- values in water of the Baltic Proper suggest effective reduction of iodate at a maximum rate of  8×10-7 (127IO3-) and 6×10-14 (129IO3-) (g/m3.day). The combination of 129I and 127I as tracers of water circulation in the Baltic Sea suggest that upwelling deep basinal water occurs into the surface along the Gotland deep and intrusion of North Atlantic water into southern Baltic. Furthermore, 129I-based model inventory reveals inflow of 330 km3/y (230-450 km3/y) water from the Kattegat into the Baltic Proper. Water exchange between the Baltic Proper and the Bothnian Sea and vice versa is estimated at 980 km3/y (600-1400 km3/y) and 1180 km3/y (780-1600 km3/y) respectively. Finally, an environmental assessment of radioactivity associated with 129I burden in the Baltic Sea region is discussed.

Page generated in 0.0796 seconds