• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nuclear Rupture in Progeria Expressing Cells

Bathula, Kranthidhar 01 January 2018 (has links)
Cells regularly take on various types of force in the body. They have structures that are able to mediate, transfer and respond to the forces. A mutation in force regulating proteins such as lamin in the nucleus or the KASH domain which connects the nucleus to the cytoskeleton of the cell can cause catastrophic events to occur. The aims of this study were to better understand the response of the nucleus when structural proteins are mutated or are not present while under force. Progeria, a rare disease where an additional farnesyl group is attached to lamin was used in this study. Different types of forces were used to represent similar conditions in the body. Confinement of endothelial cell width showed an increase of surface defects. When restricting proteins such as actin was removed the nucleus appeared to rupture. This was shown to occur at a higher rate in the progeria groups. Endothelial cells under shear force showed high amount of nuclear rupture in progeria expressing group. prolonged exposure showed more rupture which eventually cased cell death and cells to come off the surface. Progeria expressing smooth muscle cells under cyclic stretch also showed similar results as endothelial cells. The amount and rate of deformation of the nucleus when the cytoskeleton is connected and not was looked at. When the connected the rate of deformation was higher. The high rate of nuclear defects and rupture while under force in progeria expressing cells shows that the nuclei have different structural properties and are weaker. It’s also been shown that the LINC complex contributes to nuclear deformation when stretching.

Page generated in 0.034 seconds