• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 44
  • 40
  • 23
  • 19
  • 1
  • Tagged with
  • 275
  • 275
  • 64
  • 59
  • 54
  • 43
  • 42
  • 41
  • 28
  • 23
  • 22
  • 21
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Extraction of ruthenium species from dilute aqueous streams using modified inorganic materials

Helps, Kevin D. January 1991 (has links)
No description available.
12

Assessment of uranium-free nitride fuels for spent fuel transmutation in fast reactor systems

Szakaly, Frank Joseph 30 September 2004 (has links)
The purpose of this work is to investigate the implementation of nitride fuels containing little or no uranium in a fast-spectrum nuclear reactor to reduce the amount of plutonium and minor actinides in spent nuclear fuel destined for the Yucca Mountain Repository. A two tier recycling strategy is proposed. Thermal spectrum transmutation systems converted from the existing LWR fleet were modeled for the first tier, and the Japanese fast reactor MONJU was used for the fast-spectrum transmutation. The modeling was performed with the Monteburns code. Transmutation performance was investigated as well as delayed neutron fraction, heat generation rates, and radioactivity of the spent material in the short and long term for the different transmutation fuel cycles. A two-tier recycling strategy incorporating fast and thermal transmutation with uranium-free nitride fuel was shown to reduce the long-term heat generation rates and radioactivity of the spent nuclear fuel inventory.
13

Multivariate analysis applied to the characterization of spent nuclear fuel

Dayman, Kenneth Joseph 05 November 2012 (has links)
The Multi-Isotope Process Monitor is being developed at Pacific Northwest National Laboratory as a method to verify the process conditions within a nuclear fuel reprocessing facility using the gamma spectra of various process streams. The technique uses multivariate analysis techniques such as principal component analysis and partial least squares regression applied to gamma spectra collected of a process stream in order to classify the contents as belonging to a normal versus off-normal chemistry process. This approach to process monitoring is designed to function automatically, nondestructively, and in near real-time. To extend the Multi-Isotope Process Monitor, an analysis method to char- acterize spent nuclear fuel based on the reactor of origin, either pressurized or boiling water reactor, and burnup of the fuel using nuclide concentrations as input data has been developed. While the Multi-Isotope Process Monitor uses gamma spectra as input data, nuclide activities were used in this work as an initial step before Nuclide composition information was generated using ORIGEN-ARP for different fuel assembly types, initial 235U enrichments, burnup values, and cooling times. This data was used to train, tune, and test several multivariate analysis algorithms in order to compare their performance and identify the technique most suited for the analysis. To perform the classification based on reactor type, four methods were considered: k-nearest neighbors, linear and quadratic discriminant analysis, and support vector machines. Each method was optimized, and its performance on a validation set was used to determine the best method for classifying the fuel reactor class. Partial least squares was used to make burnup predictions. Three models were generated and tested: one trained on all the data, one trained for just pressurized water reactors, and one trained for boiling water reactors. Quadratic discriminant analysis was chosen as the best classifier of reactor class because of its simplicity and its potential to be extended to classify spent nuclear fuel’s fuel assembly type, i.e, more specific classes, using nuclide concentrations as input data. In the case of predicting the burnup of spent fuel using partial least squares, it was determined that making reactor-specific partial least squares models, one trained for pressurized water reactors and one trained for boiling water reactors, performed better than a single, general model that was trained for all light water reactors. Thus, the the classifier, regression algorithm, and all the necessary intermediate data processing steps were combined into a single analysis method and implemented as a Matlab function called “burnup.” This function was used to test the analysis routine on an additional set of data generated in ORIGEN-ARP. This dataset included samples with parameters that were not represented in the development data in order to ascertain the analysis method’s ability to analyze data for which it has not been explicitly trained. The algorithm was able to achieve perfect binary classification of the reactor as being a pressurized or boiling water reactor on the dataset and made burnup predictions with an average error of 0.0297%. / text
14

ANALYTICAL STRESS ANALYSIS SOLUTION FOR A SIMPLIFIED MODEL OF A REACTOR FUEL ELEMENT

Lamkin, David Ernest, 1940- January 1974 (has links)
No description available.
15

Assessment of uranium-free nitride fuels for spent fuel transmutation in fast reactor systems

Szakaly, Frank Joseph 30 September 2004 (has links)
The purpose of this work is to investigate the implementation of nitride fuels containing little or no uranium in a fast-spectrum nuclear reactor to reduce the amount of plutonium and minor actinides in spent nuclear fuel destined for the Yucca Mountain Repository. A two tier recycling strategy is proposed. Thermal spectrum transmutation systems converted from the existing LWR fleet were modeled for the first tier, and the Japanese fast reactor MONJU was used for the fast-spectrum transmutation. The modeling was performed with the Monteburns code. Transmutation performance was investigated as well as delayed neutron fraction, heat generation rates, and radioactivity of the spent material in the short and long term for the different transmutation fuel cycles. A two-tier recycling strategy incorporating fast and thermal transmutation with uranium-free nitride fuel was shown to reduce the long-term heat generation rates and radioactivity of the spent nuclear fuel inventory.
16

Theory of cladding breach location and size determination using delayed neutron signals /

Reece, Warren Daniel 08 1900 (has links)
No description available.
17

A simplified nuclear reactor core simulator model

Vogt, Douglas Kenneth 12 1900 (has links)
No description available.
18

The reactor engineering of the MITR-II construction and startup

Allen, George Charman January 1976 (has links)
Thesis. 1976. Ph.D.--Massachusetts Institute of Technology. Dept. of Nuclear Engineering. / Microfiche copy available in Archives and Science. / Vita. / Includes bibliographical references. / by George Charman Allen, Jr. / Ph.D.
19

An efficient variational solution of the transient radial-azimuthal heat transport in nuclear fuel rod arrays /

Saltos, N. Nicholas January 1987 (has links)
No description available.
20

Structure-Property Relationships of Tantalum Carbide Foams and Synthesis of an Interpenetrating Phase Composite

Faierson, Eric J. 11 September 2011 (has links)
Ceramic and refractory metal foams have a potential for use in extreme environments, such as in fuel elements within nuclear reactors both in space and terrestrial applications. In addition, infiltrating an open-cell ceramic foam with a continuous second phase can create an interpenetrating phase composite (IPC), consisting of a three-dimensional reinforcement structure. One aspect of investigation within this study was the influence of foam pore/strut size, foam composition, and foam density on neutronic and mechanical properties. Neutron transmission through open-cell tantalum carbide foams was measured using experimental techniques and modeled with Monte Carlo N-Particle (MCNP) transport code. Neutron transmission decreased linearly within tantalum carbide (TaC)/reticulated vitreous carbon (RVC) foams as areal TaC density increased. All MCNP modeling runs predicted slightly higher neutron transmission than what was experimentally measured, potentially indicating that the foam structure had a small influence on neutron transmission. Compressive strength and Young's moduli of tantalum carbide foams were measured for foam specimens that were exposed to thermal cycling and thermal shock, as well as for baseline specimens. Extensive micro-cracking was observed in the foams after 18 thermal cycles to 2100°C. However, thermal shock in liquid nitrogen did not produce observable micro-cracking in the TaC foams. The average strengths of baseline TaC/RVC foams ranged from 1.97 MPa - 3.82 MPa. The baseline TaC/PyC/RVC foams exhibited strengths ranging from 4.57 MPa - 12.60 MPa. The compressive strength of thermally cycled foams tended to be 1/3-1/2 that of baseline specimens. Another aspect of this study investigated the infiltration of RVC foams with tungsten powder in an attempt to form a tungsten-ceramic foam interpenetrating phase composite (IPC). It was found that tungsten particle size influenced infiltrated densities more than foam pore size. Significantly lower infiltrated densities were obtained using sub-micron tungsten than with 5-10 micron tungsten as a result of particle agglomeration. Infiltrated 5-10 micron tungsten achieved densities ranging from 23-25% theoretical within RVC foams, whereas sub-micron tungsten densities ranged from 11-16% theoretical. Constrained densification was observed during sintering of tungsten-infiltrated foams. / Ph. D.

Page generated in 0.0691 seconds