• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of sandwich structure analysis in predicting critical flow velocity for a laminated flat plate

Jensen, Philip (Philip J.) 08 March 2013 (has links)
The Oregon State University (OSU), Hydro Mechanical Fuel test Facility (HMFTF) is designed to hydro-mechanically test prototypical plate type fuel. OSU's fuel test program is a part of the Global Threat Reduction Initiative (GTRI), formerly known as the Reduced Enrichment for Research and Test Reactor program. One of the GTRI's goals is to convert all civilian research, and test reactors in the United State from highly enriched uranium (HEU) to a low enriched uranium (LEU) fuel in an effort to reduce nuclear proliferation. An analytical model has been developed and is described in detail which complements the experimental work being performed by the OSU HMFTF, and advances the science of hydro-mechanics. This study investigates two methods for determining the critical flow velocity for a pair of laminated plates. The objective is accomplished by incorporating a flexural rigidity term into the formulation of critical flow velocity originally derived by Miller, and employing sandwich structure theory to determine the rigidity term. The final outcome of this study results in the developing of a single equation for each of three different edge boundary conditions which reliably and comprehensively predicts the onset of plate collapse. The two models developed and presented, are termed the monocoque analogy and the ideal laminate model. / Graduation date: 2013

Page generated in 0.0699 seconds