• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 192
  • 76
  • 44
  • 23
  • 19
  • 8
  • 7
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 515
  • 515
  • 248
  • 142
  • 69
  • 69
  • 68
  • 61
  • 57
  • 52
  • 52
  • 47
  • 38
  • 36
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Thermal energy storage for nuclear power applications

Edwards, Jacob N. January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Hitesh Bindra / Storing excess thermal energy in a storage media that can later be extracted during peak-load times is one of the better economical options for nuclear power in future. Thermal energy storage integration with light water-cooled and advanced nuclear power plants is analyzed to assess technical feasibility of different storage media options. Various choices are considered in this study; molten salts, synthetic heat transfer fluids, and packed beds of solid rocks or ceramics. In-depth quantitative assessment of these integration possibilities are then analyzed using exergy analysis and energy density models. The exergy efficiency of thermal energy storage systems is quantified based on second law thermodynamics. The packed bed of solid rocks is identified as one of the only options which can be integrated with upcoming small modular reactors. Directly storing thermal energy from saturated steam into packed bed of rocks is a very complex physical process due to phase transformation, two phase flow in irregular geometries and percolating irregular condensate flow. In order to examine the integrated physical aspects of this process, the energy transport during direct steam injection and condensation in the dry cold randomly packed bed of spherical alumina particles was experimentally and theoretically studied. This experimental setup ensures controlled condensation process without introducing significant changes in the thermal state or material characteristics of heat sink. Steam fronts at different flow rates were introduced in a cylindrical packed bed and thermal response of the media was observed. The governing heat transfer modes in the media are completely dependent upon the rate of steam injection into the system. A distinct differentiation between the effects of heat conduction and advection in the bed were observed with slower steam injection rates. A phenomenological semi-analytical model is developed for predicting quantitative thermal behavior of the packed bed and understanding physics. The semi-analytical model results are compared with the experimental data for the validation purposes. The steam condensation process in packed beds is very stable under all circumstances and there is no effect of flow fluctuations on thermal stratification in packed beds. With these experimental and analytical studies, it can be concluded that packed beds have potential for thermal storage applications with steam as heat transfer fluid. The stable stratification and condensation process in packed beds led to design of a novel passive safety heat removal system for advanced boiling water reactors.
252

Food after Fukushima: Scientific Citizenship and Risk in Japan

Sternsdorff cisterna, Nicolas Igor January 2014 (has links)
This dissertation examines questions of citizenship and risk after the Fukushima nuclear accident in Japan. I argue that for sectors of the population concerned with the health effects of radiation exposure, the disaster motivated them to reconsider their relationship to the Japanese state. I introduce the concept of scientific citizenship to explore the dynamics whereby ordinary people amassed enough knowledge to critically assess expert advice and form conclusions about the intentions and ability of the state to safeguard them. Crucially, citizenship in this context is not a mode of engagement with the state where citizens seek its protection, but rather a way of circumventing it to ensure the health of future generations. It is inscribed in the decision to find alternative modes of ensuring the basic rights to life and health above and beyond the work of the state. Based on two years of in-depth fieldwork in the aftermath of the disaster, I explore ethnographically the work of groups of mothers, farmers and experts who came together to share and disseminate knowledge about radiation in an effort to protect their own and each other's children from radiation. / Anthropology
253

Reliability And Response Uncertainty Analyses Of Piping And Shutdown Systems Of Nuclear Power Plants Under Seismic Loading

Sajish, S D 02 1900 (has links) (PDF)
Earthquake safety engineering of nuclear power plant structures poses several challenges to the analyst and designer. These problems are characterized by highly transient and dynamic nature of earthquake induced excitations, random nature of details of support motions (in terms of duration, frequency content, amplitude modulation, multiple components, and spatial variability), nonlinear nature of structural behavior, geometrical complexity of the primary and a large number of secondary systems (such as, for example, piping, rotors, and machine panels), soil-structure interactions, demands on high level of safety expected of these structures, and general paucity of recorded data on strong ground motions appropriate for the given site. Probabilistic methods offer the most rational framework to base design decisions for this class of problems. The work reported in the present thesis belongs to this broad area of research. We focus attention on studying two classes of nuclear power plant components, namely, a pipework in the heat exchanger segment, and, control and safety rod drive mechanism (CSRDM) and investigate their performance by taking into account complicating features such as differential seismic support motions across multiple supports, nonlinearities at support locations, random nature of dynamic loads and uncertainties in system parameters. Response measures include peak responses, reliability against specified performance criterion, measures of uncertainties in response variables of interest. Chapter-1 provides the functional details of nuclear power plant structures that includes reactor assembly and heat transport system assembly, CSRDM, heat transfer piping networks, and nonlinear supporting devices (such as rod, spring, guide supports, limiters, and snubbers). The discussion brings out the structural mechanics issues that need attention while analyzing seismic response of some of these components. Chapter-2 provides a brief review of literature covering the following topics: Monte Carlo simulation based methods for static and dynamic reliability analysis problems, digital simulation of random variables and processes, treatment of non-Gaussianity in simulations, strategies for variance reduction, models for uncertainty in response using limited samples, data based extreme value analysis, studies on multi-supported piping networks under differential seismic inputs and seismic performance of CRDM structures. The study identifies specific issues related to numerical simulation of nonlinear dynamic response of multisupported pipeworks to differential seismic inputs, uncertainty propagation and reliability modeling in seismic response of pipeworks and CSRDM using Monte Carlo simulations with variance reduction, data based extreme value analysis, and uncertainty propagation using limited samples as topics requiring further research. The problems of numerical simulation of nonlinear multisupported piping systems subjected to differential seismic support motions and drop time characterization of CSRDM structure during a seismic event are considered in Chapter-3. It is noted that commercially available professional finite element analysis (FEA) softwares do not offer a direct means to tackle this class of problems. On the other hand, FEA packages are best suited to produce acceptable FE models which take into account the geometrical complexities of the structures. Thus, the reasonable way to move forward would be to develop external interfaces that take advantage of FE modeling capabilities of professional packages and at the same time enable treatment of complexities associated with differential support motions, nonlinearities and axial rigid motions of subsystems as in CSRDM. The work reported in Chapter-3 describes the efforts expended in achieving this objective. Here the given built-up structure is divided in to a set of linear substructures each of which are modeled using FE analysis procedures. The proposed scheme allows for these FE models to reside in professional FE analysis codes. An iterative time domain scheme for modeling the interaction forces between these substructures is discussed. The set of governing equations of motion are developed in terms of normal modes of substructures in their uncoupled states. A suite of benchmark problems are first employed to validate the procedure developed. Subsequently, the earthquake induced dynamic response of CSRDM structure and the pipeline running between IHX and secondary sodium pump in a typical fast breeder reactor is simulated. The algorithm for simulation of dynamic response of CSRDM and multi-supported pipelines under differential support motions developed in Chapter-3 is employed in Chapter-4 to investigate the questions concerning influence of uncertainties in specifying the loads and the system parameters on the system response. Specifically, the study focuses on quantifying uncertainty in system response characteristics based on limited number of Monte Carlo simulations of the response. For this purpose we draw upon an earlier work by Wilks which specifies the number of samples needed to estimate γ th percentile point of a random variable with β level of confidence. We explore in this Chapter, the application of this idea in the analysis of nonlinear, randomly parametered, dynamical systems under stochastic excitations. In Chapter-5 we turn our attention to the modeling of aseismic reliability of the nonlinear pipework under differential support motions and the CSRDM structure. The performance functions considered for the piping structure are in terms of highest displacements and stresses over a specified time durations while for CSRDM, the performance function is in terms of scram time being less than a specified time duration. We tackle the first problem by using theory of data based extreme value analysis while the second problem is addressed using an adaptive importance sampling strategy. The contributions here pertain to the exploration of data based extreme values analysis as applied to an industrial scale structure and improvisation of algorithmic modifications in the development of adaptive importance sampling density functions. This improvisation consists of selection of sampling points as a judicious mix of points from both safe and unsafe regions. This is shown to reduce the strong correlations that otherwise would be present if samples are taken only from the unsafe region. These studies demonstrate how Monte Carlo simulations with limited samples can be utilized to draw useful conclusions on structural reliability. Chapter-6 summarizes the main contributions made in the thesis and makes a few suggestions for further research. There are five annexures in the thesis. Annexure-1 contains listing of Matlab m-files used for solving illustrative problems in Chapter-2. The details of FE modeling of multisupported system under differential support motions and the details of substructuring scheme used in modeling of such systems with local nonlinearities are provide in Annexure-2. The details of material and geometry of CSRDM structure are provided in Annexure-3. Annexure-4 summarizes the main details of hypothesis tests used in data based extreme value analysis. The algorithms used for converting response spectra into compatible power spectral density functions are described in Annexure-5.
254

Modelling of global nuclear power systems using a real options approach

Liu, Wung Pok Pok January 2013 (has links)
This thesis is intended to contribute to policy analysis on nuclear energy planning, and also as a contribution to applied mathematics. From point of view of nuclear policy analysis, this thesis is not designed to offer realistic detail on nuclear engineering itself, which is of second order relative to our chosen problem. The goal is to address some large scale problems in the management of the world stocks of two important nuclear fuels, Uranium (an economically finite natural resource) and Plutonium (the result at first of policies for Uranium burning, and later of policies on fast reactor breeding). This thesis assumes, as a ‘political’ working hypothesis, that at some future time world governments will agree urgently to decarbonise the world economy. Up to that point, assuming no previous large progress towards decarbonisation, basic world electricity consumption will have continued to grow at its historic average of 1.9% compound. This rate is hypothetically a combination of slower growth in the developed world and faster growth in the developing world. On this hypothesis, a necessary but not sufficient condition for decarbonising the economy would be the complete decarbonisation of future basic electricity demand, plus the provision of sufficient extra decarbonised electricity supply to take over powering all land transport. The demand for electricity for land transport at any time is assumed to equal (in line with historical experience) an increment of approximately 20% above the contemporary basic world demand for electricity. The hypothetical scenario for achieving this model of decarbonisation, without major stress to the worlds economic and social system, is to expand nuclear power to meet the whole of basic electricity demand. This would leave intermittent renewable sources to power the intermittent electricity demands of road transport.This thesis explores the above hypothetical future in various ways. We first list published forecasts of future Uranium use and future Uranium supply. These suggest that presently known Uranium reserves can meet demand for many decades. However on extrapolating the cumulative demand for Uranium that results from the above working hypothesis, we find that if a dash to decarbonise world electricity supply begins immediately, this would consume a very large multiple of presently known Uranium reserves. Sustaining that decarbonisation for only a few more decades of demand growth would consume further large multiples of the known Uranium supply. A delay in the start of the dash for decarbonisation by only a few decades greatly increases the cumulative Uranium demand needed to reach decarbonisation even briefly.Therefore the sustained achievement of decarbonisation, in a world economy of the historical type, requires such large Uranium resources that a successor fuel cycle is required. This thesis models only the case of a Uranium-based fast reactor fuel cycle, since this cycle can in principle consume all the cumulative past and future Plutonium stockpile, and can then meet its own Plutonium needs for a long period (hundreds or thousands of years), allowing ample time for economic adjustment. However a commercially effective fast reactor technology is some decades away.Up to this point, the thesis has only added two physical factors to the existing debate on Uranium needs: namely cumulative growth of electricity demand at its historic rate, and a political choice for 100% physical decarbonisation of the electricity supply.The mathematical and economic contribution of the thesis then begins. We ask the following questions:1. Under what circumstances would profit-maximising investors (or an economically rational centralized economy) actually choose to build enough reactors to decarbonise the world electricity supply?2. Would the need for investors to make a profit increase or decrease the life of the economically accessible Uranium reserves?3. What is the effect of accelerating or delaying the technical availability of fast reactors?4. When if at all would there be shortages of Uranium or Plutonium?5. Under what circumstances would rational investors chose a smooth and physically feasible handover from Uranium burning to fast reactors, thus avoiding the need for a large but temporary return to fossil fuel?The above questions set a mathematically demanding problem: four interacting physical stocks and two physical flow variables ( control variables) must simultaneously be optimized, along with their economic effects. The two control variables are the rate of building or decommissioning Uranium burners, and the rate of building or decommissioning fast reactors. The first control variable drives the cumulative stock of Uranium burning reactors, and hence the resulting maximum physical supply of electricity (with sales income bounded by demand), less the costs of operating, and of new investment. This variable also drives the cumulative depletion of the finite economically extractable reserve of Uranium, and it simultaneously drives an increase in the free Plutonium stock (from Uranium burning). The second control variable, the rate of building or decommissioning fast reactors, drives a decrease in the Plutonium stock (from charging new fast reactors) and it drives a cumulative increase in the stock of fast reactors. This affects the resulting rate of supply of electricity and of income less operating costs and new investment costs. The combined sales of electricity from the two reactor systems is bounded by the total world demand for electricity.The thesis explores this problem in several stages. A fully stochastic form of the problem (stochastic in the price of electricity) is posed using the tools of contingent claims analysis, but this proves intractable to solve, even numerically. Fortunately the price increases needed to impose decarbonisation are very large, and they result from discrete and long lasting government actions. Hence for policy analysis it is adequate to assume a large one off change in electricity price, and observe the progress towards the resulting evolving equilibrium. This problem is also addressed in stages, firstly we optimise the Uranium burning and the fast reactor cycles in isolation from each other, then we allow some purely heuristic and manually controlled interaction between them. Finally we solve, and economically optimize, the total dynamic system of two physical control variables and the resulting four interacting dependent stock variables.
255

Vybrané logistické procesy ve společnosti Škoda JS / Chosen logistics processes in Škoda JS

Kindlová, Kateřina January 2011 (has links)
This master thesis deals with the purchase and sale process in Škoda JS company. The aim of this work is to assess whether the setting of the purchase and sale process is met by the company also within a real business case, in compliance with set controls, and whether the degree of perfect delivery is sufficient. In the introduction, the author specifies the basic terms: logistics, logistic chain, customer benefits, information systems in logistics, buying and selling. The following chapter introduces Škoda JS company, including the sphere of its entrepreneurial activity. This chapter also deals with the nuclear power industry. In the crucial chapter, the author describes the process of purchase and sale in Škoda JS company and compares it with a real business case. In conclusion, the author evaluates discrepancies and suggests recommendations to avoid them.
256

Ekologie a právo / Ecology and law

Koubalíková, Jitka January 2012 (has links)
The thesis deals with the relationship between ecology and law in nuclear energy and the possible impact on the environment. The first part briefly summarizes the most important historical approaches to ecology and describes environmental law in the Czech Republic and the EU. The next section is focused on law in the area of construction and operation of nuclear power plants in the Czech Republic and the EU. The fourth chapter deals with operation of nuclear power plant Temelín and assessment the legislation. The fifth chapter is dedicated to various forms of longstanding conflict between the Czech Republic and Austria.
257

Análise dinâmica de um sistema de isolamento de vibrações por dispositivos eletromecânicos /

Alves, João Rafael. January 2017 (has links)
Orientador: Bento Rodrigues de Pontes Junior / Banca: Marcio Antonio Bazani / Banca: Andre Luiz Andreoli / Resumo: Quatro configurações de circuito elétrico são estudadas como opções de ligação em dispositivos eletromecânicos: puramente resistivo, RL em série, RLC em série e RLC em série com indutância de variação não linear. Respostas em frequência, diagramas de bifurcação, históricos no tempo, planos de fase, mapas de Poincaré e espectros de frequência são utilizados nas análises. Os três circuitos lineares explorados na dissertação revelam algumas diferenças em termos da transmissibilidade de deslocamento. O sistema com circuito puramente resistivo tem as mesmas características de um sistema puramente mecânico e viscosamente amortecido, mas a resistência elétrica e o fator de amortecimento viscoso se relacionam de forma inversamente proporcional. As respostas dos circuitos RL e RLC, ambos em série, apresentam aspectos mais comportados. A principal diferença entre os sistemas com circuitos RL e RLC em série está principalmente na transmissibilidade para baixas frequências. Embora com uma pequena diferença, a transmissibilidade do sistema com circuito RLC é menor do que a do sistema com circuito RL, para baixas frequências. Para o sistema não linear, nas respostas em frequência e diagramas de bifurcação percebem-se regiões de resposta desordenada para valores baixos de resistência elétrica em determinadas faixas de frequência. Com a análise das respostas, notam-se as presenças dos comportamentos dinâmicos periódico, quasi-periódico e caótico. Para valores baixos de resistência elétrica, ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Four configurations of electrical circuit are studied as options of electromechanical devices: purely resistive, RL in series, RLC in series e RLC in series with nonlinear inductance. Frequency responses, bifurcation diagrams, time series, phase plane, Poincaré maps and frequency spectrum are used in analysis. The three linear circuits explored in this dissertation reveal some differences in terms of displacement transmissibility. The system with purely resistive circuit has the same characteristics of a purely viscous damped, but the electrical resistance and the damping factor are inversely proportional. Responses of circuits RL and RLC, both in series, present behaving aspects. The main difference between the systems with RL and RLC circuits is related to the transmissibility for low frequencies. Although with a small difference, the transmissibility of RLC circuit system is smaller than the RL circuit system, for low frequencies. For the nonlinear system, it is possible to perceive disordered response regions for small values of electrical resistance on certain frequency bands. After response analisys, it is noted the presence of periodic, quasi-periodic and chaotic behaviors. For small values of electrical resistance, the choice of capacitance value is very important to determine the type of the dynamic behavior. Small differences of the capacitance values mean significant changes in the system dynamics. It is not rare that even inside the tolerance of electrical compone... (Complete abstract click electronic access below) / Mestre
258

Optimisation du pilotage d'un Réacteur à Eau Pressurisée dans le cadre de la transition énergétique à l'aide d'algorithmes évolutionnaires / Optimization of a PWR management in the framework of the energetic transition using evolutionary algorithms

Muniglia, Mathieu 22 September 2017 (has links)
L'augmentation de la contribution des énergies renouvelables (solaire ou éolien) et une évolution majeure du parc électrique français et s'inscrit dans le cadre de la transition énergétique. Il est prévu que la part de ces énergies dans le mix passe de 6% actuellement à 30% d'ici à 2030. Cette augmentation en revanche laisse entrevoir d'importants déséquilibres entre l'offre et la demande, et les autres moyens de production, l'énergie nucléaire en tête, devront donc s'adapter. Ce travail vise à augmenter la disponibilité de suivi de charge des centrales, en améliorant leur pilotage durant tout le cycle d'exploitation. Parmi l'ensemble des réacteurs du parc nucléaire français, les réacteurs à eau pressurisées d'une puissance électrique de $1300$ MW sont choisis en raison de leur capacité de suivi de charge déjà accrue. Dans un premier temps, un modèle multi-physique et de type simulateur de la centrale est développé, permettant de prendre en arguments les paramètres principaux des barres de commande, et permettant de déterminer en quelques dizaines de minutes de calcul, les critères d'intérêt dont le premier est en lien avec le diagramme de pilotage et le second avec le volume d'effluents. Le problème d'optimisation est alors résolu grâce à des algorithmes évolutionnaires parallèles asynchronesde type maître-esclave, et les mode de pilotage obtenus sont commentés. / The increase of the renewable energies contribution (as wind farms, solar energy) is a major issue in the actual context of energetic transition. The part of intermittent renewable energies is indeed forecast to be around 30% of the total production in 2030, against 6% today. On the other hand, their intermittent production may lead to an important imbalance between production and consumption. Consequently, the other ways of power production must adapt to those variations, especially nuclear energy which is the most important in France. This work aims at increasing the availability of thepower plants to load-follow, by optimizing their manageability all along their operation cycle. Among the French nuclear fleet, the pressurized water reactors(PWR) producing $1300$ electrical MW and operated in the "G" mode are considered as they show the higher capability to load-follow. In a first step, a multi-physics PWR model is designed taking as inputs the main parameters of the control rods, and computing in few minutes the criteria of interest whichare linked to the control diagram and to the effluents volume. The optimization problem which consists in minimizing those two values of interest is then solved thanks to a parallel asynchronous master-worker evolutionary algorithm. Finally, the efficient operating modes are discussed.
259

Behavior of radioactive cesium through the food chain in arthropods and annelids after the Fukushima Dai-ichi nuclear power plant accident / 福島第一原子力発電所事故後の節足動物と環形動物における食物連鎖を介した放射性セシウムの動態

Tanaka, Sota 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第21826号 / 農博第2339号 / 新制||農||1067(附属図書館) / 学位論文||H31||N5198(農学部図書室) / 京都大学大学院農学研究科地域環境科学専攻 / (主査)准教授 髙橋 知之, 教授 北山 兼弘, 准教授 刑部 正博 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
260

Energy Transition in Taiwan: A Multi-level Perspective / 台湾におけるエネルギー転換-重層的視座からの分析-

Chen, Yi-Chun 25 November 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(地球環境学) / 甲第22137号 / 地環博第193号 / 新制||地環||38(附属図書館) / 京都大学大学院地球環境学舎地球環境学専攻 / (主査)准教授 森 晶寿, 教授 諸富 徹, 教授 宇佐美 誠 / 学位規則第4条第1項該当 / Doctor of Global Environmental Studies / Kyoto University / DFAM

Page generated in 0.0637 seconds