Spelling suggestions: "subject:"buclear reactors -- simulationlation methods"" "subject:"buclear reactors -- motionsimulation methods""
1 |
Solution of algebraic problems arising in nuclear reactor core simulations using Jacobi-Davidson and multigrid methodsHavet, Maxime 10 October 2008 (has links)
The solution of large and sparse eigenvalue problems arising from the discretization of the diffusion equation is considered. The multigroup<p>diffusion equation is discretized by means of the Nodal expansion Method (NEM) [9, 10]. A new formulation of the higher order NEM variants revealing the true nature of the problem, that is, a generalized eigenvalue problem, is proposed. These generalized eigenvalue problems are solved using the Jacobi-Davidson (JD) method<p>[26]. The most expensive part of the method consists of solving a linear system referred to as correction equation. It is solved using Krylov subspace methods in combination with aggregation-based Algebraic Multigrid (AMG) techniques. In that context, a particular<p>aggregation technique used in combination with classical smoothers, referred to as oblique geometric coarsening, has been derived. Its particularity is that it aggregates unknowns that<p>are not coupled, which has never been done to our<p>knowledge. A modular code, combining JD with an AMG preconditioner, has been developed. The code comes with many options, that have been tested. In particular, the instability of the Rayleigh-Ritz [33] acceleration procedure in the non-symmetric case has been underlined. Our code has also been compared to an industrial code extracted from ARTEMIS. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
|
Page generated in 0.1094 seconds