• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 194
  • 63
  • 22
  • 21
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 457
  • 123
  • 122
  • 113
  • 79
  • 79
  • 78
  • 73
  • 54
  • 53
  • 51
  • 51
  • 48
  • 42
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Molecular and Kinetic Characterization of the Aspartate Transcarbamoylase Dihydroorotase Complex in Pseudomonas putida

Schurr, Michael J. (Michael John) 05 1900 (has links)
Aerobic Gram negative bacteria such as Pseudomonas putida were reported to possess class A ATCases and to have a M.W. of 360 kD. The nucleotide sequence of the P. putida pyrBC was determined to answer this question once and for all. The expected regulatory gene was not found. It is shown that the P. putida pyrB gene is overlapped by pyrC by 4 bp. The P.putida pyrB is 1005 bp (335 aa) in length and the pyrC is 1275 bp (425 aa) long. Both of these genes complement E. coli mutants with their respective genotypes. Another finding borne out from the sequence is an effector binding site at the N-terminus of pyrB of P. putIda. The binding site shows that effectors compete with carbamoylphosphate for the active site. In this dissertation, it is shown that the ATCase of P.putida is a trimer of M.W. of 109 kD (3 x 36.4 kD) and that the gene encoding pyrB is overlapped by the pyrC gene which encodes DHOase. It is also shown that the pyrBC encoded enzymes copurify as a dodecameric complex with a M.W. of 484 kD.
182

Regulatory Divergence of Aspartate Transcarbamoylase from the Pseudomonads

Linscott, Andrea J. (Andrea Jane) 12 1900 (has links)
Aspartate transcarbamoylase (ATCase) was purified from 16 selected bacterial species including existing Pseudomonas species and former species reassigned to new genera. An enormous diversity was seen among the 16 enzymes with each class of ATCase being represented. The smallest class, class C, with a catalytically active homotrimer, at 100 kDa, was found in Bacillus and other Gram positive bacteria. In this report, the ATCases from the Gram negatives, Shewanella putrefaciens and Stenotrophomonas maltophilia were added to class C membership. The enteric bacteria typify class B ATCases at 310 kDa, with a dodecameric structure composed of two catalytic trimers coupled to three regulatory dimers. A key feature of class B ATCases is the dissociability of the holoenzyme into regulatory and catalytic subunits which were enzymatically active. In this report, the ATCase from Pseudomonas indigofera was added to class B ATCases. The largest class, at 480 kDa, class A, contains the fluorescent Pseudomonas including most members of the 16S rRNA homology group I. Two polypeptides are produced from overlapping pyrBC' genes. The former, pyrB, encodes a 34 kDa catalytic polypeptide while pyrC' encodes a 45 kDa dihydroorotase-like polypeptide. Two non active trimers are made from six 34 kDa chains which are cemented by six 45 kDa chains to form the active dodecameric structure. Dissociation of the holoenyzme into its separate active subunits has not been possible. In this report, the ATCases from Comamonas acidovorans and C. testosteroni, were added to the class A enzymes. An even larger class of ATCase than class A at 600 kDa was discovered in Burkholderia cepacia. Stoichiometric measurements predict a dodecamer of six 39 kDa polypeptides and six 60 kDa polypeptides. Unlike other large pseudomonads ATCases, the enzyme from B. cepacia was dissociable into smaller active forms. Both the holoenzyme and its dissociated forms were regulated by nucleotide effectors. A new class of ATCase was proposed for B. cepacia type enzymes.
183

Characterization of Aspartate Transcarbamoylase and Dihydroorotase in Moraxella Catarrhalis

Fowler, Michael A. (Michael Allen), 1961- 05 1900 (has links)
Bacterial aspartate transcarbamoylases (ATCase's) are divided into three classes that correspond to taxonomic relationships within the bacteria. The opportunistic pathogen Moraxeila catarrhalis has undergone several reclassifications based on traditional microbiological criteria. The previously uncharacterized ATCase from M. catarrhalis was purified to homogeneity and its chemical properties characterized. The ATCase from M. catarrhalis is a class C ATCase with an apparent molecular mass of 480-520 kDa. The M. catarrhalis ATCase is a dodecomer composed of six 35 kDa polypeptides and six 45 kDa polypeptides. The enzyme has an unusually high pH optimum of greater than pH 10. The enzyme exhibited hyperbolic kinetic with a Km for aspartate of 2 mM. A single, separate 78 kDa dihydroorotase from M. catarrhalis was identified and it was not associated with ATCase. These data support the reclassification of M. catarrhalis out of the Neisseriaceae family.
184

Assembly of Pseudomonas putida Aspartate Transcarbamoylase and Possible Roles of the PyrC' Polypeptide in the Folding of the Dodecameric Enzyme

Hongsthong, Apiradee, 1970- 05 1900 (has links)
Aspartate transcarbamoylase (ATCase) of Pseudomonas putida consists of two different polypeptides, PyrB and PyrC' (Schurr et al, 1995). The role of the PyrC' and the assembly of PyrB and PyrC' have been studied. The ATCase made in vitro of P.putida PyrB with P.putida PyrC', and of E.coli PyrB with P.putida PyrC ' were generated under two different conditions, denaturation and renaturation, and untreated. It was found that PyrC' plays a role in the enzymatic regulation by ATP, CTP and UTP. In addition to playing a role in substrate binding, the PyrB polypeptide is also involved in effector binding (Kumar et al., manuscript in preparation). The most energetically preferred form of the P.putida WT is a dodecamer with a molecular mass of 480 kDa. The ratio between the PyrB and the PyrC' is 1:1. In studies of nucleotide binding, it was discovered that the P.putida PyrB was phosphorylated by a protein kinase in the cell extract. In the presence of 20 mM EDTA, this phosphorylation was inhibited and the inhibition could be overcome by the addition of divalent cations such as Zn2+ and Mg2+. This result suggested that the phosphorylation reaction required divalent cations. In the CAD complex of eukaryotes, phosphorylations of the CPSase and the linker region between ATCase and DHOase did not occur in the presence of UTP and it was hypothesized (Carrey, 1993) that UTP and phosphorylation(s) regulated the conformational change in the enzyme complex. Therefore, the same idea was approached with P.putida ATCase, where it was found that 1.0 mM UTP inhibited the phosphorylation of PyrB by more than 50%. These results suggested that the regulation of the conformational change of the P.putida ATCase might be similar to that of CAD. Furthermore, peptide mapping for phosphorylation sites was performed on P.putida ATCase WT, WT --11 amino acids and WT --34 amino acids from the N-terminus of the PyrB polypeptide. The results showed that the phosphorylation sites were located on the fragment that contained amino acid number-35 to amino acid number-112 from the N-terminus of the PyrB polypeptide.
185

Isolation and Characterization of the Operon Containing Aspartate Transcarbamoylase and Dihydroorotase from Pseudomonas aeruginosa

Vickrey, John F. (John Fredrick), 1959- 05 1900 (has links)
The Pseudomonas aeruginosa ATCase was cloned and sequenced to determine the correct size, subunit composition and architecture of this pivotal enzyme in pyrimidine biosynthesis. During the course of this work, it was determined that the ATCase of Pseudomonas was not 360,000 Da but rather present in a complex of 484,000 Da consisting of two different polypeptides (36,000 Da and 44,000 Da) with an architecture similar to that of E. coli ATCase, 2(C3):3(r2). However, there was no regulatory polypeptide found in the Pseudomonas ATCase.
186

Comparison of Aspartate Transcarbamoylase and Pyrimidine Salvage in Sporosarcina urea, Sprolactobacillus inulinus, Lactobacillus fermentum, and Micrococcus luteus

Barron, Vincent N. (Vincent Neal) 08 1900 (has links)
The enzyme that catalyzes the committed step in pyrimidine biosynthesis, aspartate transcarbamoylase, has been compared in selected endospore-forming organisms and in morphologically similar control organisms. The ATCases and pyrimidine salvage from Sporosarcina ureae, Sporolactobacillus inulinus, Lactobacillus fermentum, and Micrococcus luteus were compared to those of Bacillus subtilis. While the ATCases from Sporosarcina ureae, Sporolactobacillus inulinus, and L. fermentum were found to exhibit characteristics to that of Bacillus with respect to molecular weight and kinetics, M. luteus ATCase was larger at approximately 480 kDa. Furthermore, pyrimidine salvage in Sporosarcina ureae and M. luteus was identical to those of B. subtilis, while pyrimidine salvage of Sporolactobacillus inulinus and L. fermentum resembled that of the pseudomonads.
187

Properties of the non-catalytic nucleotide site of the Ca²⁺-ATPase of sarcoplasmic reticulum

Davidson, George Alexander January 1986 (has links)
Properties of the regulatory nucleotide binding site of the Ca²⁺-ATPase of skeletal muscle sarcoplasmic reticulum have been investigated. Previously, several lines of evidence have indicated the existence of both catalytic and regulatory nucleotide binding sites on the same polypeptide species. The present study concentrates on the interaction of the ATP analogue, 2'-3'-0-(2,4,6-trinitrocyclohexadienylidine) adenosine 5'-triphosphate, (TNP-ATP), with sites on the non-phosphorylated and phosphorylated enzyme. In particular those conformational transitions linking TNP-ATP fluorescence to the phosphoenzyme subspecies have been sought. Previous studies have demonstrated a close relationship between TNP-ATP fluorescence and phosphoenzyme formed from ATP plus Ca²⁺, or from inorganic phosphate (Pi) in the absence of Ca²⁺, in the reverse direction of the cycle. However, the precise relationship of TNP-ATP fluorescence to the energy transducing conformations of the ATPase is controversial. TNP-ATP binding was investigated by spectrophotometric methods and by the synthesis of [ ¹⁴C] TNP-ATP. [ ¹⁴C] TNP-ATP bound to the ATPase site with high affinity ([TNP-ATP] 0. 5 = 0.12 uM), and · a stoichiometry of 5.4 nmol/mg. [ ¹⁴C] ATP binding stoichiometry was 6.1 nmol/mg, demonstrating that TNP-ATP binds to a single family of sites. The nature of the phosphoenzyme intermediate species that results in enhanced TNP-ATP fluorescence was investigated. NEM derivitization, Sr²⁺-transport and Ca²⁺-oxalate uptake have previously been found to alter the distribution or relative levels of phosphoenzyme intermediates. Modification of thiol groups responsible for phosphoenzyme decomposition (SHd), using N-ethylmaleimide (NEM) (0.4 mM) with 50 uM Ca²⁺, 1 mM AMP-PNP at pH 7.0, resulted in a 50% decrease in Ca²⁺-uptake, Ca²⁺-ATPase activity and ADP-insensitive E-P (E₂-P), while total EP (E₁-P + E₂-P = 3.2 nmol/mg), remained unaltered. ATP-dependent TNP-ATP enhanced fluorescence decreased by 50% under these conditions. Ca²⁺-oxalate induced turnover has previously been shown to decrease steady-state E₂-P levels by prevention of Ca²⁺ gradient formation. Oxalate (5 mM) caused a 40% decrease in ATP-induced TNP-ATP fluorescence levels while total EP levels remained relatively unaltered. Previous studies have shown that Sr²⁺-induced turnover favours higher levels of E₂-P by inhibiting the reverse reaction from E₂-P to E₁-P. Strontium-induced turnover increased TNP-ATP fluorescence by 10% as compared to that of Ca²⁺, without affecting steady-state E-P levels, consistent with an E₂-P conformation relationship to enhanced TNP-ATP fluorescence. The binding site for TNP-ATP on the enzyme was investigated by chase studies using millimolar concentrations of nucleotides. ATP and ADP diminished TNP-ATP fluorescence competitively, with apparent Km values of 1.25 and 0.54 mM respectively, consistent with their affinities of binding to the regulatory site. The rates of decrease of fluorescence (25 and 34 sec⁻¹ at 5 ᵒC, respectively), were of the same order of magnitude as the derived "off" rate of TNP-ATP from the site of enhanced fluorescence (33 sec⁻¹), consistent with TNP-ATP being bound to the regulatory site of the enzyme. Enhanced TNP-ATP fluorescence has previously been related to decreased water activity of the probe site. Alteration of water activity by structure- forming (Deuterium oxide) and structure-breaking solutes (KSCN) in relation to fluorescence were explored. Replacement of H₂O by D₂O altered the fluorescence of unbound TNP-ATP. The apparent for TNP-ATP binding to the E₂-P conformation of the regulatory site. The regulatory site appears to be a modified form of the phosphorylated catalytic site. It is proposed that TNP-ATP fluorescence monitors an enzyme conformation related to Ca²⁺ binding to an inward oriented site of low affinity. The mechanism of K⁺ fluorescence quenching appears to be via an acceleration of dephosphorylation, as opposed to a change in affinity of the enzyme for TNP-ATP, as previously suggested. The K⁺ sensitivity of TNP-ATP fluorescence has proved useful in demonstrating a direct interaction of valinomycin with the enzyme through the monovalent cation binding site. Valinomycin appears to bind directly to the enzyme and to selectively accelerate the "off" rate of K⁺ from this site.
188

Nové redoxní značky pro DNA / New redox labels for DNA

Simonova, Anna January 2018 (has links)
The aim of my thesis was the synthesis of the modified 2'-deoxyribonucleoside triphosphates (dNTPs) bearing electrochemically oxidizable labels and their incorporation into DNA for the application in bioanalysis. In the first part of my thesis, I developed the synthesis of modified dNTPs bearing 2,3- dihydrobenzofuran (DHB) or 2-methoxyphenol (MOP) labels at 5-position of 2'- deoxycytidine 5'-O-triphosphate and at the 7-position of 7-deaza-2'-deoxyadenosine 5'-O- triphosphate by Suzuki-Miyaura cross-coupling reactions. Then modified dNTPs were used as substrates for DNA polymerases in enzymatic synthesis of modified DNA by PCR and primer extension. Electrochemical properties of the DHB and MOP-labeled nucleosides, dNTPs and DNA were studied by using of a square-wave voltammetry (SWV) at the pyrolytic graphite electrode (PGE) giving signals of MOP oxidation around 0.5 V and DHB oxidation around 0.85 V. The use of DHB group in combination with other electrochemical active labels was limited by close position of its oxidation peak to the signals of oxidation of natural nucleobases, whereas MOP moiety was successfully used for redox coding of nucleobases in combination with aminophenyl or benzofurazane label giving two independently readable redox signals in each case. In the second part of this...
189

Guanosine nucleotides link cell wall metabolism and protein synthesis during entry into quiescence

Diez, Simon January 2021 (has links)
Quiescence, a transitory period of non-growth, is a ubiquitous aspect that is present in all organisms. In addition to being present in all forms of life, quiescence is a feature that has been observed in cells that are important for human health, including stem cells in mammals and antibiotic tolerant cells in bacteria. In bacteria, quiescence per se has recently been suggested to underlie the transient tolerance to a wide range of antibiotics. Furthermore, most microbial life exists in a quiescent state. Despite their prevalence and importance, relatively little is known about the physiology of quiescent bacteria. One aspect of bacterial quiescence that has been repeatedly observed is their lowered metabolic activity compared to actively growing bacteria. How do cells that grow and divide enter into a temporary state of non-growth? In particular, how are the energy-intensive processes that are required for growing cells regulated during a non-growing state? The main subject of this thesis is to investigate how protein synthesis, the most energy-intensive process in growing bacterial cells, is regulated during entry into a quiescent phenotype (stationary phase). I first investigate how protein synthesis is regulated using a single cell method that fluorescently tags nascent polypeptide chains. In chapter 3, I show that during entry into stationary phase, protein synthesis is downregulated heterogeneously with one group of cells having comparatively low protein synthesis, resulting in a population that is approximately bimodal. I further show that this bimodality is dependent on a signaling system (PrkC and its partner phosphatase PrpC) that senses cell wall metabolism. I connect signaling from this system to the expression of an enzyme (SasA) that produces a group of nucleotides that are major regulators of growth in bacteria ((pp)pGpp). Lastly, I show that the bimodality is dependent on the three enzymes that synthesize (pp)pGpp. In chapter 4, I explore in detail how the bimodality in protein synthesis is generated. This heterogeneity requires the production of (pp)pGpp by three synthases: SasA, SasB, RelA. I first show that these enzymes differentially affect this bimodality: RelA and SasB are necessary to generate the sub-population exhibiting low protein synthesis, whereas SasA is necessary to generate cells exhibiting comparatively higher protein synthesis. The RelA product (pppGpp) allosterically activates SasB, and I find that the SasA product (pGpp) competitively inhibits this activation. I provide in vivo evidence that this antagonistic interaction mediates the observed heterogeneity in protein synthesis. This chapter, therefore, identifies the mechanism underlying the generation of phenotypic heterogeneity in the central physiological process of protein synthesis. In chapter 5, I next turn to understand the biochemical mechanism by which cells with comparatively low levels of protein synthesis down-regulate this process. I first show that ppGpp is sufficient to inhibit protein synthesis in vivo. I then show that ppGpp inhibits protein synthesis by inhibiting translation initiation directly by binding to the essential GTPase, Initiation Factor 2 (IF2). In collaboration with Ruben Gonzalez’s lab, we also show that ppGpp prevents the allosteric activation of IF2. Finally, I demonstrate that the observed attenuation of protein synthesis during the entry into quiescence is a consequence of the direct interaction of (pp)pGpp and IF2.
190

The role of TNP-Nucleotides, LYS492 and CA²⁺chelators in the skeletal muscle sarcoplasmic reticulum CA²⁺atpase cycle

Wichmann, Janine January 1998 (has links)
In the first part of this study, the kinetics of decay of TNP-nucleotide superfluorescence was investigated with a view to understanding the role of nucleotides and Lys492 in later steps in the catalytic cycle of the skeletal muscle Ca²⁺ATPase. It has been found previously, and verified here, that tethering TNP-8N₃-AMP to the Ca²⁺ATPase via Lys492 retarded the Ca²⁺ initiated decay of Pᵢ-induced superfluorescence 10-fold compared with untethered nucleotide. The rapidity of the decay upon addition of EDTA suggested that the E₂ ↔ E₁ → E₁Ca₂ steps were being monitored rather than dephosphorylation per se. Tethered diand triphospho species did not accelerate the decay. While monophasic kinetics was observed with untethered TNP-AMP and TNP-8N₃-AMP, complex kinetics were observed with the di- and triphospho TNP-nucleotides. This was shown to be due to the utilization of TNP-ADP and -ATP, and the azido derivatives, as coupled substrates of the Ca²⁺ATPase in the forward direction of catalysis in the presence of Ca²⁺. The hydrolysis rates of TNP-ADP, TNP-ATP, TNP-8N₃ -ADP, and TNP-8N₃ -ATP were 10, 5, 15 and 10 nomoles/min/mg of protein, respectively, at room temperature and pH 5.5. Ca²⁺ transport was supported by all four nucleotides. This is the first time that a diphosphonucleotide has been shown to support Ca²⁺ transport. A new nonhydrolysable triphospho TNPnucleotide, TNP-AMP-PCP was synthesized and shown to interact with the Ca²⁺ATPase in a similar way, in terms of superfluorescence, as the other TNP-nucleotides. It did not show the complex kinetics on inhibition of the Pcinduced superfluorescence by Ca²⁺, but neither did it accelerate the kinetics. It was concluded that TNP-nucleotides do not accelerate the E₂ ↔ E₁ transition under these conditions, possibly because of the presence of glycerol in the medium. In the second part of the study, it was shown that addition of small amounts of chelators EGTA, EDTA, BAPTA, DTPA, HEDTA and NTA to a Ca²⁺ transport assay in which the free Ca²⁺ concentration is monitored by Fluo-3 causes the Ca²⁺ATPase to pump to apparently lower levels as seen in the [Ca²⁺] lim fluorescence. Addition of chelator retards pump function in the sense that it takes longer for 50 nmols Ca²⁺ to be accumulated. Increased thermodynamic efficiency of the pump and contaminating heavy metal ions were considered as possible mechanisms. To some extend Zn²⁺ and Cd²⁺, but not Fe²⁺ and Cu²⁺, appeared to reverse the partial inhibition. While interpretation of the results is difficult, it is suggested that heavy metal ions interact with luminal loops of the Ca²⁺ATPase and enhance Ca²⁺ release under conditions of high luminal Ca²⁺ concentrations.

Page generated in 0.0289 seconds