• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improved QC-STBC OFDM system using null interfeence elimination

Anoh, Kelvin O.O., Abd-Alhameed, Raed, Dama, Yousef A.S., Jones, Steven M.R., Ghazaany, Tahereh S., Rodriguez, Jonathan, Voudouris, Konstantinos N. January 2013 (has links)
Yes / The quasi-orthogonal space time block coding (QO-STBC) over orthogonal frequency division multiplexing (OFDM) is investigated. Traditionally, QO-STBC does not achieve full diversity since the detection matrix of QO-STBC scheme is not a diagonal matrix. In STBC, the decoding matrix is a diagonal matrix which enables linear decoding whereas the decoding matrix in traditional QO-STBC does not enable linear decoding. In this paper it is shown that there are some interfering terms in terms of non-diagonal elements that result from the decoding process which limit the linear decoding. As a result, interference from the application of the QO-STBC decoding matrix depletes the performance of the scheme such that full diversity is not attained. A method of eliminating this interference in QO-STBC is investigated by nulling the interfering terms towards full diversity for an OFDM system. It was found that the interference reduction technique permits circa 2dB BER performance gain in QO-STBC. The theoretical and simulation results are presented, for both traditional QO-STBC and interference-free QO-STBC applying OFDM
2

A Multi-Antenna Design Scheme based on Hadamard Matrices for Wireless Communications

Anoh, Kelvin O.O., Chukwu, M.C., Dama, Yousef A.S., Abd-Alhameed, Raed, Ochonogor, O., Jones, Steven M.R. 27 August 2014 (has links)
Yes / A quasi-orthogonal space time block coding (QO-STBC) scheme that exploits Hadamard matrix properties is studied and evaluated. At first, an analytical solution is derived as an extension of some earlier proposed QO-STBC scheme based on Hadamard matrices, called diagonalized Hadamard space-time block coding (DHSBTC). It explores the ability of Hadamard matrices that can translate into amplitude gains for a multi-antenna system, such as the QO-STBC system, to eliminate some off-diagonal (interference) terms that limit the system performance towards full diversity. This property is used in diagonalizing the decoding matrix of the QOSTBC system without such interfering elements. Results obtained quite agree with the analytical solution and also reflect the full diversity advantage of the proposed QO-STBC system design scheme. Secondly, the study is extended over an interference-free QO-STBC multi-antenna scheme, which does not include the interfering terms in the decoding matrix. Then, following the Hadamard matrix property advantages, the gain obtained (for example, in 4x1 QO-STBC scheme) in this study showed 4-times louder amplitude (gain) than the interference-free QOSTBC and much louder than earlier DHSTBC for which the new approach is compared with.

Page generated in 0.1084 seconds