• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3262
  • 1477
  • 1007
  • 307
  • 200
  • 94
  • 74
  • 74
  • 70
  • 70
  • 70
  • 70
  • 70
  • 68
  • 53
  • Tagged with
  • 8036
  • 2286
  • 1824
  • 1084
  • 980
  • 974
  • 968
  • 850
  • 839
  • 834
  • 795
  • 784
  • 679
  • 613
  • 608
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
611

A Learning Approach To Sampling Optimization: Applications in Astrodynamics

Henderson, Troy Allen 16 December 2013 (has links)
A new, novel numerical optimization algorithm is developed, tested, and used to solve difficult numerical problems from the field of astrodynamics. First, a brief review of optimization theory is presented and common numerical optimization techniques are discussed. Then, the new method, called the Learning Approach to Sampling Optimization (LA) is presented. Simple, illustrative examples are given to further emphasize the simplicity and accuracy of the LA method. Benchmark functions in lower dimensions are studied and the LA is compared, in terms of performance, to widely used methods. Three classes of problems from astrodynamics are then solved. First, the N - impulse orbit transfer and rendezvous problems are solved by using the LA optimization technique along with derived bounds that make the problem computationally feasible. This marriage between analytical and numerical methods allows an answer to be found for an order of magnitude greater number of impulses than are currently published. Next, the N -impulse work is applied to design periodic close encounters (PCE) in space. The encounters are defined as an open rendezvous, meaning that two spacecraft must be at the same position at the same time, but their velocities are not necessarily equal. The PCE work is extended to include N -impulses and other constraints, and new examples are given. Finally, a trajectory optimization problem is solved using the LA algorithm and comparing performance with other methods based on two models-with varying complexity-of the Cassini-Huygens mission to Saturn. The results show that the LA consistently outperforms commonly used numerical optimization algorithms.
612

THE EFFECTS OF IN-SITU STIMULATION OF NATURAL BIOFILM ON GROUNDWATER FLOW AND BACK DIFFUSION IN A FRACTURED ROCK AQUIFER

Bayona, LUIS 17 August 2009 (has links)
Remediation of DNAPL contaminated sites in fractured rock has proven to be very difficult. No current technology can be used to remediate such sites in a timely and economic manner due to the inherent heterogeneity of fractured rock and back diffusion of contaminants stored in the rock matrix. This study was conducted in order to evaluate the viability of biostimulation of native biofilm as a means to control flow and back diffusion at fractured rock sites. A field trial was conducted at an uncontaminated site in southern Ontario. The site is underlain by dolomites of the Lockport formation. Three major fracture zones have been identified in the study area. Two closely spaced (5.04 m) boreholes were used to isolate a fracture zone at a depth of 17 m with straddle packers. These boreholes were used to create an injection-withdrawal system with recirculation, which was used for tracer injection in order to load the rock matrix with a conservative dye tracer and to inject nutrients for 21 days in order to stimulate the growth of biofilm in the fracture. Evaluation of the ability of the biofilm to control flow through the fracture was conducted through pulse interference tests. Pulse interference tests were conducted before and after the injection of nutrients. The results from the pulse interference tests showed a maximum 65% reduction in transmissivity, which is equivalent to a 28% reduction in fracture aperture shortly after the cessation of biostimulation. In order to investigate the effect of the biofilm stimulation on matrix diffusion the rock matrix was loaded with Lissamine, a conservative fluorescent dye tracer prior to biostimulation and its concentration was monitored at injection and withdrawal wells. The effect that biostimulation had on matrix diffusion was determined by comparing field concentration measurements with a model that simulates a system unaffected by biofilm stimulation. The biostimulation lowered the concentration of tracer attributable to back diffusion at the withdrawal well by about 20% for approximately 30 days following the cessation of biostimulation. It is also thought that large amounts of tracer might have been trapped in the biofilm as it formed and was then released back into the fracture as the biofilm deteriorated. / Thesis (Master, Civil Engineering) -- Queen's University, 2009-08-11 19:27:44.232
613

Validation of the Lattice Boltzmann Method for Direct Numerical Simulation of Wall-Bounded Turbulent Flows

BESPALKO, DUSTIN JOHN 18 September 2011 (has links)
In this work, the lattice Boltzmann method (LBM) was validated for direct numerical simulation (DNS) of wall-bounded turbulent flows. The LBM is a discrete-particle-based method that numerically solves the Boltzmann equation as opposed to conventional DNS methods that are based on the Navier-Stokes (NS) equations. The advantages of the LBM are its simple implementation, its ability to handle complex geometries, and its scalability on modern high-performance computers. An LBM code was developed and used to simulate fully-developed turbulent channel flow. In order to validate the results, the turbulence statistics were compared to those calculated from a conventional NS-based finite difference (FD) simulation. In the present study, special care was taken to make sure the computational domains for LBM and FD simulations were the same. Similar validation studies in the literature have used LBM simulations with smaller computational domains in order to reduce the computational cost. However, reducing the size of the computational domain affects the turbulence statistics and confounds the results of the validation. The turbulence statistics calculated from the LBM and FD simulations were found to agree qualitatively; however, there were several significant deviations, particularly in the variance profiles. The largest discrepancy was in the variance of the pressure fluctuations, which differed by approximately 7%. Given that both the LBM and FD simulations resolved the full range of turbulent scales and no models were used, this error was deemed to be significant. The cause of the discrepancy in the pressure variance was found to be the compressibility of the LBM. The LBM allows the density to vary, while the FD method does not since it solves the incompressible form of the NS equations. The effect of the compressibility could be reduced by lowering the Mach number, but this would come at the cost of significantly increasing the computational cost. Therefore, the conclusion of this work is that, while the LBM is capable of producing accurate solutions for incompressible turbulent flows, it is significantly more expensive than conventional methods for simple wall-bounded turbulent flows. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2011-09-15 23:24:09.968
614

NUMERICAL INVESTIGATIONS OF THE INDOOR THERMAL ENVIRONMENT IN ATRIA AND OF THE BUOYANCY- DRIVEN VENTILATION IN A SIMPLE ATRIUM BUILDING

Hussain, SHAFQAT 23 July 2012 (has links)
In recent years Computational Fluid Dynamics (CFD) has been extensively used in the study of the indoor environment and the thermal comfort conditions for the design of modern buildings, however, there remains the need to thoroughly evaluate the accuracy of the results given by CFD methods. In the present work, numerical investigations of the indoor thermal environment in the atria of two existing buildings and in a simple three-storey atrium building design have been undertaken using CFD techniques. The initial work involved the evaluation of various turbulence models and a radiation model used in CFD simulations for the prediction of the thermal environment in atria of different geometrical configurations in two buildings for which experimental data is available. The airflow patterns and temperature distributions were determined, under both forced and hybrid ventilation conditions and thermal comfort conditions were evaluated. The numerical predictions were compared with the available experimental measurements and, in general, good agreement was obtained between the numerical and experimental results. After the evaluation of the adequacy of available turbulence models and the validation of the accuracy of the CFD model used, a simple full-scale three-storey atrium building was modeled to explore the potential of using buoyancy-driven natural ventilation. The validated CFD model was used to determine the ventilation flow rates, airflow patterns, and temperature distributions in the building. The dynamic effect of the thermal mass of the external walls on the performance of the building was also investigated using transient CFD simulations. Atria with various geometrical configurations were studied in order to investigate the effect of atrium design changes on the air flow and temperature distributions in the simple atrium building considered. A parametric study was carried out to assess the sensitivity of the ventilation performance to the change in various geometric and solar parameters. On the basis of this parametric study, a few changes were carried out in the design of the building to examine their effect on ventilation performance. Finally, the use of night ventilation in the atrium building was explored and it was found that night ventilation can be increased by using hot water circulation in the chimney walls. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2012-07-22 12:57:00.947
615

Numerical simulation of Ricci flow on a class of manifolds with non-essential minimal surfaces

Wilkes, Jason Unknown Date
No description available.
616

The SNARC Effect as a Tool to Examine Crosstalk during Numerical Processing in a PRP paradigm

Tan, Shawn Unknown Date
No description available.
617

Méthode rapide de calcul de la radiation infrarouge dans l'atmosphère et évaluation de son influence dans un modèle de prévision météorologique

Garand, Louis. January 1980 (has links)
No description available.
618

Measuring organ donation performance internationally : modeling the effects of available denominators for organ donation rates

Hornby, Karen. January 2008 (has links)
Objective. To evaluate organ donation (OD) policy, appropriate comparisons between different OD programs are required. The objective of this research was to investigate alternative methods of measuring national rates of OD using publicly available data and examine the implications of using each method as a measure of performance. / Method. We used 7 measures to calculate deceased OD rates, based on 7 different denominators. Data were collected from OD organizations and the World Health Organization. OD rates for each measure were calculated for 10 countries for the years 2001--2004. Relative rates were calculated using Spain as the standard. / Results. We found variations in relative rates across the proposed measures. Regardless of the measure used Spain excelled. / Conclusion. If the purpose of the OD rate is to identify the top performer internationally, it may not matter which measure is used providing this is done with an understanding of its limitations.
619

Galerkin's method for wire antennas.

Chan, Kwok Kee. January 1971 (has links)
No description available.
620

A simple atmospheric model on infinite domains /

Bartello, Peter. January 1984 (has links)
No description available.

Page generated in 0.06 seconds