Spelling suggestions: "subject:"anumerical"" "subject:"bnumerical""
81 |
Numerical Treatment of Non-Linear singular pertubation problems. /Shikongo, Albert. January 2007 (has links) (PDF)
Thesis (M. Sc.)--University of the Western Cape, 2007. / Includes bibliographical references (leaves 61-77).
|
82 |
General semi-structured grid generation for complex 3-D geometries with disparate length scales /Khawaja, Aly Salim, January 1998 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1998. / Vita. Includes bibliographical references (leaves 238-250). Available also in a digital version from Dissertation Abstracts.
|
83 |
Scale model validation of QUAYSIM and WAVESCAT numerical models of ship motionsEigelaar, Lerika Susan 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Various numerical modelling software packages are available for predicting moored ship motions
and forces. The focus of this study was to validate the numerical models QUAYSIM and
WAVESCAT and how these models together form a procedure for predicting moored ship motions
and forces under the impact of high and low frequency waves.
The validation procedure applied in the study involved numerical modelling of a given physical
model situation in which moored ship motions and forces were measured under both high and low
frequency wave conditions. A physical model with built-in bathymetry was provided by the Council
for Scientific and Industrial Research (CSIR) Hydraulics Laboratory in Stellenbosch. The model
consisted of a moored container vessel at a jetty, with various mooring lines and fenders. A
JONSWAP spectrum, which combines high and low frequency wave components, was used to
simulate wave conditions for the modelling of ship motions. The wave periods and wave heights
were measured at observation stations located at specific points in the basin. Other measurements
such as those of the forces in the fenders and mooring lines were also determined.
A multi-step approach was used to numerically predict the ship motions and forces. Firstly, the
coastal processes occurring within the basin, which was set up to simulate the physical model
wave behaviour, were measured to calibrate the SWAN Delft3D-WAVE model. The wave heights
and periods for the respective observation stations were obtained and compared to the physical
model measurements. The Delft3D-FLOW SURFBEAT model was used to calculate the low
frequency waves in the coastal area. Low frequency waves are the main cause of larger ship
motions and forces, therefore it is important to investigate them as part of the ship motion
prediction procedure.
After the waves had been computed, wave forces acting on the vessel needed to be determined
for both high and low frequency waves. These wave forces were modelled with the combinations
SURFBEAT/LF-STRIP (low frequency waves) and SWAN/WAVESCAT (high frequency waves).
LF-STRIP provided the link between low frequency wave models and ship motion models,
converting the low frequency waves into long wave forces acting on the vessel. WAVESCAT
converted the high frequency waves to short wave forces. The calculated long wave forces and
short wave forces served as the input required to run the ship motion model QUAYSIM to
determine the movements of the moored ship as well as the restraining forces in the lines and
fenders. The ship motions and forces were compared to the physical model, with the intention of possibly validating the QUAYSIM/WAVESCAT approach for predicting moored ship motions.
The study provides an overview of both the setup and results of the physical and numerical model.
A description of each of the numerical models SWAN, SURFBEAT, LF-STRIP, WAVESCAT and QUAYSIM is provided, along with a comparison between the physical and numerical models for
each procedure. The validation procedure provided useful documentation of the quality of these
numerical modelling approaches, already in use in some design projects.
The numerical models WAVESCAT and QUAYSIM models of ship motion have shown to provide a
good correlation between the physical model and the numerical approach. However, improvements
are still required. Good comparisons were obtained for the long wave motions (horizontal
movements - surge, sway and yaw). The surge and sway motions were slightly overestimated by
QUAYSIM. The magnitude of the yaw was comparable but the not well represented in spectral plots. / AFRIKAANSE OPSOMMING: Daar is verskeie numeriese modellering-sagtewareprogramme beskikbaar waarmee
skipbewegings en -kragte voorspel kan word. Die fokus van hierdie studie was om die numeriese
modelle QUAYSIM en WAVESCAT te valideer. Saam vorm hierdie twee modelle ’n prosedure om
vasgemeerde skipbewegings en -kragte veroorsaak deur lang- en kortgolfaksie te bepaal.
Die validasieprosedure wat in hierdie studie gebruik is, behels ’n numeriese modelering van ’n
fisiese situasie waar ’n vasgemeerde skip se bewegings en kragte onder kort- en langgolfkondisies
gemeet is. ’n Fisiese model met ingeboude batimetrie is voorsien deur die Council for Scientific
and Industrial Research (CSIR) se hidroliese laboratorium in Stellenbosch. Die model bestaan uit
’n vasgemeerde houerskip by ’n pier met verskeie ankerlyne en bootbuffers. ’n JONSWAPspektrum,
wat kort- en langgolfkomponente kombineer, is gebruik om golfomstandighede vir die
modellering van skipbewegings te simuleer. Golfperiodes en golfhoogtes is by spesifieke
waarnemingstasies in die gesimuleerde hawe-area gemeet. Verdere opmetings, soos dié van die
kragte in die bootbuffers en ankerlyne, is ook gedoen.
’n Stap-vir-stap benadering is gevolg om die skipbewegings numeries te voorspel. Eerstens is die
kusprosesse wat in die gesimuleerde hawe plaasvind, gekalibreer met die numeriese paket SWAN
Delft3D-WAVE. Die golfhoogtes en golfperiodes vir elke waarnemingstasie is bereken en vergelyk
met die fisiese model se opmetings. Die SURFBEAT-module van Delft3D-FLOW is gebruik om die
lae-frekwensie golwe in die kusarea te bereken. Lae-frekwensie golwe is die hoofoorsaak van
skipbewegings en daarom is dit belangrik om dit te ondersoek gedurende die
voorspellingsprosedure van skipbewegings.
Na die golwe bereken is, moes die kragte wat beide kort en lang golwe op die skip uitoefen ook
bereken word. Hierdie golfkragte is gemodelleer deur middel van die kombinasies SURFBEAT/LFSTRIP
(langgolwe) en SWAN/WAVESCAT (kortgolwe). LF-STRIP het die skakel tussen
golfmodelle en skipbewegingsmodelle verskaf en die lae-frekwensie golwe omgeskakel in
langgolfkragte wat op die skip uitgeoefen is. WAVESCAT het die hoë-frekwensiegolwe
omgeskakel in kortgolfkragte wat op die skip uitgeoefen is. Die berekende langgolf- en
kortgolfkragte is ingevoer op die skipbewegingsmodel QUAYSIM om die skipbewegings en
inperkingskragte in die bootbuffers en ankerlyne te bepaal sodat dit vergelyk kon word met die
fisiese model, met die doel om moontlik die QUAYSIM/WAVESCAT-prosedure om gemeerde
skipbewegings te voorspel te valideer.
Die studie verskaf ’n oorsig van die opstel en resultate van die fisiese en numeriese modelle. Elk
van die numeriese modelle SWAN, SURFBEAT, LF-STRIP, WAVESCAT en QUAYSIM word
beskryf en vergelykings word getref tussen die numeriese en fisiese modelle vir elke prosedure. Die validasieprosedure verskaf nuttige dokumentasie van die kwaliteit van hierdie numeriese
modeleringsprosedures wat reeds in sekere ontwerpprojekte gebruik word.
Die numeriese WAVESCAT en QUAYSIM modelle van skipbewegings het ’n goeie korrelasie
tussen die fisiese model en die numeriese benadering gelewer. Verbeteringe is wel steeds nodig.
Goeie vergelykings is verkry vir langgolfbewegings (horisontale bewegings – stuwing (“surge”),
swaai (“sway”) en gier (“yaw”)). Die stu- en swaaibewegings was effens oorskat met QUAYSIM.
Die grootte van die gier was wel vergelykbaar maar is nie grafies goed uitgebeeld nie.
|
84 |
Numerical simulations of the steady Euler equations on unstructured gridsHu, Guanghui 01 January 2009 (has links)
No description available.
|
85 |
The influence of representational processes on the numerical distance effectBerg, Neil Douglas 28 August 2008 (has links)
No description available.
|
86 |
An analysis of discretisation methods for ordinary differential equationsPitcher, Neil January 1980 (has links)
Numerical methods for solving initial value problems in ordinary differential equations are studied. A notation is introduced to represent cyclic methods in terms of two matrices, A<sub>h</sub>, and B<sub>h</sub>, and this is developed to cover the very extensive class of m-block methods. Some stability results are obtained and convergence is analysed by means of a new consistency concept, namely optimal consistency. It is shown that optimal consistency allows one to give two-sided bounds on the global error, and examples are given to illustrate this. The form of the inverse of A<sub>h</sub> is studied closely to give a criterion for the order of convergence to exceed that of consistency by one. Further convergence results are obtained , the first of which gives the orders of convergence for cases in which A<sub>h</sub>, and B<sub>h</sub>, have a special form, and the second of which gives rise to the possibility of the order of convergence exceeding that of consistency by two or more at some stages. In addition an alternative proof is given of the superconvergence result for collocation methods. In conclusion the work covered is set in the context of that done in recent years by various authors.
|
87 |
Variational shape segmentation and mesh generationYan, Dongming, 严冬明 January 2010 (has links)
published_or_final_version / Computer Science / Doctoral / Doctor of Philosophy
|
88 |
Discrete Stability of DPG MethodsHarb, Ammar 10 May 2016 (has links)
This dissertation presents a duality theorem of the Aubin-Nitsche type for discontinuous Petrov Galerkin (DPG) methods. This explains the numerically observed higher convergence rates in weaker norms. Considering the specific example of the mild-weak (or primal) DPG method for the Laplace equation, two further results are obtained. First, for triangular meshes, the DPG method continues to be solvable even when the test space degree is reduced, provided it is odd. Second, a non-conforming method of analysis is developed to explain the numerically observed convergence rates for a test space of reduced degree. Finally, for rectangular meshes, the test space is reduced, yet the convergence is recovered regardless of parity.
|
89 |
Shooting method for singularly perturbed two-point boundary value problemsChan, Kwok Cheung 01 January 1998 (has links)
No description available.
|
90 |
Boundaries of research : civilian leadership, military funding, and the international network surrounding the development of numerical weather prediction in the United StatesHarper, Kristine C. 25 April 2003 (has links)
American meteorology was synonymous with subjective weather forecasting in the
early twentieth century. Controlled by the Weather Bureau and with no academic
programs of its own, the few hundred extant meteorologists had no standing in the
scientific community. Until the American Meteorological Society was founded in
1919, meteorologists had no professional society. The post-World War I rise of
aeronautics spurred demands for increased meteorological education and training.
The Navy arranged the first graduate program in meteorology in 1928 at MIT. It
was followed by four additional programs in the interwar years. When the U.S.
military found itself short of meteorological support for World War II, a massive
training program created thousands of new mathematics- and physics-savvy
meteorologists. Those remaining in the field after the war had three goals: to create
a mathematics-based theory for meteorology, to create a method for objectively
forecasting the weather, and to professionalize the field. Contemporaneously,
mathematician John von Neumann was preparing to create a new electronic digital
computer which could solve, via numerical analysis, the equations that defined the
atmosphere. Weather Bureau Chief Francis W. Reichelderfer encouraged von
Neumann, with Office of Naval Research funding, to attack the weather forecasting
problem. Assisting with the proposal was eminent Swedish-born meteorologist
Carl-Gustav Rossby. Although Rossby returned to Stockholm to establish his own
research school, he was the de facto head of the Meteorology Project providing
personnel, ideas, and a publication venue. On-site leader Jule Charney provided the
equations and theoretical underpinnings. Scandinavian meteorologists supplied by
Rossby provided atmospheric reality. Six years after the Project began,
meteorologists were ready to move their models from a research to an operational
venue. Attempts by Air Force meteorologist Philip D. Thompson to co-opt
numerical weather prediction (NWP) prompted the academics, Navy, and Weather
Bureau members involved to join forces and guarantee that operational NWP
would remain a joint activity not under the control of any weather service. This is
the story of the professionalization of a scientific community, of significant
differences in national styles in meteorology, and of the fascination (especially by
non-meteorologists) in exploiting NWP for the control of weather. / Graduation date: 2003
|
Page generated in 0.0453 seconds