• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation améliorée des sols par l'essai de chargement de pointe au piézocone. Application au calcul des fondations profondes / Improved characterization of soils using the Cone Loading Test - Application to foundation design

Ali, Hassan 07 October 2010 (has links)
L’essai de chargement d’une pointe pénétrométrique (Cone Loading Test, essai CLT) est un nouvel essai de reconnaissance des sols in situ, qui constitue une amélioration majeure de l’essai de pénétration statique avec une pointe piézocône (CPTu). L’essai de chargement de pointe consiste à interrompre la pénétration classique (EN ISO 22476-1) à une cote souhaitée et à réaliser un chargement par paliers successifs de la pointe jusqu’à la rupture du sol.La courbe de chargement, reliant la pression appliquée sur la pointe au tassement de celle-ci,est riche en renseignements sur la déformabilité des sols. L’essai permet donc une caractérisation améliorée des sols en fournissant des paramètres de déformabilité aussi bien que les paramètres de résistance obtenus lors d’un essai de pénétration statique classique.La validation de la méthode d’essai et de son protocole expérimental, a été effectuée selon trois voies complémentaires : expérimentale, numérique et physique. Au niveau expérimental, plusieurs campagnes d’essais ont été réalisées en choisissant des sites intéressants pour le projet et contenants une importante base de données (essais in situ,au laboratoire, essais de pieux, essais sismiques…) comme le site des argiles des Flandres de Merville, un site sableux à Utrecht aux Pays-Bas, et un site sableux à Limelette en Belgique.Les résultats des différentes campagnes ont montré qu’il est possible d’avoir des courbes de chargement exploitables pour le calcul d’un module de déformation, utilisable et comparable en tout point aux modules obtenus par d’autres types d’essais. L’essai est adapté à un panel de sol très varié. Il est plus représentatif de l’état initial dans le sol que d’autres types d’essais.Par ailleurs les conditions aux limites sont bien maîtrisées.Au niveau numérique, une large étude paramétrique a été menée avec le logiciel Plaxis, pour tester l’influence de la géométrie de la pointe, du type de chargement, du modèle de comportement, des paramètres du sol, ainsi que des conditions initiales et au limite du problème. Des essais CLT ont été également réalisés sur des modèles réduits en centrifugeuse, pour tester l’influence de quelques paramètres comme la vitesse de chargement, la géométrie de l’embout de la pointe, la densité du massif ainsi que le niveau de g. Ces essais ont été associés à des essais de chargement de pieu instrumenté et des essais de fondations superficielles et profondes afin de pouvoir relier les paramètres mécaniques de l’essai CLT au comportement des ouvrages. En considérant que la pointe du pénétromètre est un modèle réduit de pieu, une retombée directe de l’essai CLT est sa capacité d’être un outil de dimensionnement de fondations. A cet effet, une méthode directe utilisant la résistance de pointe et le frottement latéral limite de l’essai CLT a été proposée pour calculer la capacité portante et prédire le tassement d’un pieu.Cette méthode consiste en une nouvelle approche transformant les courbes de chargement et celles de mobilisation de frottement d’un essai CLT point par point en courbe charge-déplacement d’un pieu (courbes t-z). / The Cone Loading Test (CLT) is a new in situ test, which constitutes a major improvement to the piezocone penetration test (CPTu). The cone loading test consists in stopping the penetration (EN ISO 22476-1) at a desired depth, and carrying out a loading of the cone by successive load steps until the ground failure.The obtained loading curve, which relates the pressure applied on the cone in each step, to the cone settlement, is rich in information regarding soil deformability. Therefore, the test allows improved soil characterization by providing deformability parameters as well as the strength parameters obtained during a CPT test.The validation of the cone loading test method was conducted by three complementary approaches: experimental, numerical and physical.Several test campaigns were conducted on different sites such as the Merville site (Flanders clay), and two sandy sites in Utrecht (The Netherlands), and Limelette (Belgium). The results of these campaigns have shown that loading curves can be obtained for a modulus calculation, which is comparable to the other investigation tests moduli. The test is suitable for varied soil types. It is more representative of the initial soil state than other test types. Furthermore the boundary conditions are well controlled.In the numerical approach performed with Plaxis finite element modelling software, an important parametric study was done, in order to test the influence of cone geometry, loading type, behaviour model, soil parameters, initial conditions and boundary problem. CLT tests were also performed on reduced scale models in a geotechnical centrifuge. The objective was to test the influence of some parameters such as the loading rate, the cone geometry, the soil density and the level of g. These tests were associated with instrumented pile loading tests as well as shallow and deep foundation tests in order to link the mechanical parameters of the CLT test to the structures’ behaviour. By considering that the cone penetrometer is a reduced pile model, a very practical and interesting outcome is the potential of the cone loading test to be a foundations dimensioning tool. For this purpose, a direct method using the cone resistance and limit side friction of the CLT was proposed to calculate the bearing capacity, and predict the pile settlement. Thismethod is a new approach transforming the loading curves and those of friction mobilization of a CLT, point by point to a load-settlement curve of a pile (t-z curves).
2

Morphodynamics of sand mounds in shallow flows

Garcia-Hermosa, M. Isabel January 2008 (has links)
Large-scale bed features are often encountered in coastal waters, and include sandbanks and spoil heaps. The morphodynamic development of such features involves complicated nonlinear interactions between the flow hydrodynamics, sediment transport, and bed profile. Numerical modelling of the morphodynamic evolution and migration of large-scale bed features is necessary in order to understand their long-term behaviour in response to changing environmental conditions. This thesis describes detailed measurements of the morphodynamics of sand mounds in unidirectional and oscillatory (tidal) flows, undertaken at the U.K. Coastal Research Facility (UKCRF). High quality data were collected, including water velocities, water levels and overhead images. The parameters tested are: three types of mound shape (circular and elliptical in plan shape, and Gaussian, cosine and triangular in cross-section); underlying fixed or mobile bed conditions; and initial crest height (submerged, surface-touching and surface-piercing). Peak flow velocities are about 0.5 m/s, the sand median grain size is 0.454 mm, and transport occurring mostly as bedload. When analysing the data, the bed contours are determined by digitising the shoreline at different water levels. From these plots, the volume, height, and centroid position of the mound are calculated. A large-scale fit method, based on a Gaussian function has been used to separate small-scale ripples from the large-scale bed structure during the evolution of an isolated sand mound or spoil heap. The bed profile after the ripples are removed is comparable to typical predictions by shallow-flow numerical solvers. The UKCRF experiments investigated the morphodynamic response of a bed mound to hydrodynamic forcing: shape changes, migration rates, volume decay and sediment transport rates. The measured migration rate and decay of a submerged sand mound in the UKCRF are found to be in satisfactory agreement with results from various theoretical models, such as the analytical solution derived by De Vriend. Numerical predictions of mound evolution by a commercial code, PISCES, are also presented for a fully submerged sand mound; the bed evolution is reasonably similar to that observed in the UKCRF. The data provided as a result of the research reported in this thesis provide insight into the behaviour of sand mounds in steady and unsteady flows at laboratory scale, and should also be useful for benchmark (validation) purposes to numerical modellers of large-scale morphodynamics.

Page generated in 0.108 seconds