• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 225
  • 176
  • 105
  • 27
  • 12
  • 10
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 655
  • 655
  • 143
  • 122
  • 120
  • 115
  • 99
  • 58
  • 49
  • 45
  • 43
  • 40
  • 38
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Interaction between thermal comfort and HVAC energy consumption in commercial buildings

Taghi Nazari, Alireza 05 1900 (has links)
The primary purpose of the current research was to implement a numerical model to investigate the interactions between the energy consumption in Heating, Ventilating, and Air Conditioning (HVAC) systems and occupants’ thermal comfort in commercial buildings. A numerical model was developed to perform a thermal analysis of a single zone and simultaneously investigate its occupants’ thermal sensations as a non-linear function of the thermal environmental (i.e. temperature, thermal radiation, humidity, and air speed) and personal factors (i.e. activity and clothing). The zone thermal analyses and thermal comfort calculations were carried out by applying the heat balance method and current thermal comfort standard (ASHRAE STANDARD 55-2004) respectively. The model was then validated and applied on a single generic zone, representing the perimeter office spaces of the Centre for Interactive Research on Sustainability (CIRS), to investigate the impacts of variation in occupants’ behaviors, building’s envelope, HVAC system, and climate on both energy consumption and thermal comfort. Regarding the large number of parameters involved, the initial summer and winter screening analyses were carried out to determine the measures that their impacts on the energy and/or thermal comfort were most significant. These analyses showed that, without any incremental cost, the energy consumption in both new and existing buildings may significantly be reduced with a broader range of setpoints, adaptive clothing for the occupants, and higher air exchange rate over the cooling season. The effects of these measures as well as their combination on the zone thermal performance were then studied in more detail with the whole year analyses. These analyses suggest that with the modest increase in the averaged occupants’ thermal dissatisfaction, the combination scenario can notably reduce the total annual energy consumption of the baseline zone. Considering the global warming and the life of a building, the impacts of climate change on the whole year modeling results were also investigated for the year 2050. According to these analyses, global warming reduced the energy consumption for both the baseline and combination scenario, thanks to the moderate and cold climate of Vancouver.
42

Numerical Modeling of Flexible ZnO Thin-Film Transistors Using COMSOL Multiphysics

Nan, Chunyan 22 July 2013 (has links)
Increasing attention has been directed towards the development of optically transparent and mechanically flexible thin film transistors (TFTs) and associated circuits based on the transition metal oxides. These flexible see-through structures offer reduced weight, potential low-cost fabrication, and high performance compared to commonly used hydrogenated amorphous silicon (a-Si:H) in applications for large-area electronics and displays. As these emerging technologies evolve towards commercialization, a thorough investigation of the impacts of the thermo-mechanical stress and strain and their effects on the electrical and mechanical stability of the flexible microelectronic devices have become increasingly necessary. However, not much progress has been reported in this area, and the numerical modeling of the flexible transistors with the Finite Element Method (FEM) would provide unique insight to the design and operation of the flexible TFTs. In this thesis, numerical models of flexible TFTs are built up by COMSOL Multiphysics and compared with analytical models to reach the best agreement between the experimental measurements and the numerical analyses. These simulations provide additional insight into the local stress induced strain within the device due to both intrinsic and applied stress. It was shown that the thermal and mechanical impacts on the TFT performance can be reduced by placing the vital active layer of the flexible device near the neutral mechanical plane or by proper designing the device structure and processing conditions based on the data derived from the numerical models. The mathematical analysis and numerical simulation will be used to improve the electrical and mechanical performance and the reliability of the transistors for flexible applications.
43

Dynamically Tunable Photonic Bandgap Materials

Schaub, Dominic Etienne 13 October 2010 (has links)
Photonic bandgap materials are periodic structures that exclude electromagnetic field propagation over frequency intervals known as bandgaps. These materials exhibit remarkable wave dispersion and have found use in many applications that require control over dynamic electromagnetic fields, as their properties can be tailored by design. The two principal objectives of this thesis are the development of a liquid crystal-based microwave photonic bandgap device whose bandgap could be tuned during operation and the design and implementation of a spectral transmission-line modeling method for band structure calculations. The description of computational methods comprises an overview of the implemented numerical routines, a derivation of the spectral properties of the transmission-line modeling method in periodic domains, and the development of an efficient sparse matrix eigenvalue algorithm that formed the basis of the spectral transmission-line modeling method. The discussion of experimental methods considers the use of liquid crystals in microwave applications and details the design and fabrication of several devices. These include a series of modified twisted nematic cells that were used to evaluate liquid crystal alignment and switching, a patch resonator that was used to measure liquid crystal permittivity, and the liquid crystal photonic bandgap device itself. Numerical experiments showed that the spectral transmission-line modeling method is accurate and substantially faster and less memory intensive than the reference plane wave method for problems of high dielectric contrast or rapidly varying spatial detail. Physical experiments successfully realized a microwave photonic bandgap structure whose bandgap could be continuously tuned with a bias voltage. The very good agreement between simulated and measured results validate the computational and experimental methods used, particularly the resonance-based technique for permittivity measurement. This work's results may be applied to many applications, including microwave filters, negative group velocity/negative refraction materials, and microwave permittivity measurement of liquid crystals.
44

Dynamically Tunable Photonic Bandgap Materials

Schaub, Dominic Etienne 13 October 2010 (has links)
Photonic bandgap materials are periodic structures that exclude electromagnetic field propagation over frequency intervals known as bandgaps. These materials exhibit remarkable wave dispersion and have found use in many applications that require control over dynamic electromagnetic fields, as their properties can be tailored by design. The two principal objectives of this thesis are the development of a liquid crystal-based microwave photonic bandgap device whose bandgap could be tuned during operation and the design and implementation of a spectral transmission-line modeling method for band structure calculations. The description of computational methods comprises an overview of the implemented numerical routines, a derivation of the spectral properties of the transmission-line modeling method in periodic domains, and the development of an efficient sparse matrix eigenvalue algorithm that formed the basis of the spectral transmission-line modeling method. The discussion of experimental methods considers the use of liquid crystals in microwave applications and details the design and fabrication of several devices. These include a series of modified twisted nematic cells that were used to evaluate liquid crystal alignment and switching, a patch resonator that was used to measure liquid crystal permittivity, and the liquid crystal photonic bandgap device itself. Numerical experiments showed that the spectral transmission-line modeling method is accurate and substantially faster and less memory intensive than the reference plane wave method for problems of high dielectric contrast or rapidly varying spatial detail. Physical experiments successfully realized a microwave photonic bandgap structure whose bandgap could be continuously tuned with a bias voltage. The very good agreement between simulated and measured results validate the computational and experimental methods used, particularly the resonance-based technique for permittivity measurement. This work's results may be applied to many applications, including microwave filters, negative group velocity/negative refraction materials, and microwave permittivity measurement of liquid crystals.
45

Slip partitioning, crustal tectonics and deformation of the Queen Charlotte margin and northern Vancouver Island

Hippchen, Sabine 21 September 2011 (has links)
Part I of this thesis investigates current deformation in western British Columbia from northern Vancouver Island in the south to Haida Gwaii in the north. The area is characterized by transition from the Cascadia subduction zone to the Queen Charlotte transform fault. The tectonic setting involves interactions between the Pacific, North America, Juan de Fuca, and Explorer plates, and the Winona block, involving a number of plate boundaries: the mainly strike-slip Queen Charlotte, Revere-Dellwood-Wilson and Nootka faults, the Explorer ridge, and the Cascadia subduction zone. Using GPS campaign data from 1993 to 2008 I derive a new crustal velocity field for Northern Vancouver Island and the adjacent mainland, and integrate it with previous velocity fields developed for Haida Gwaii, southern Vancouver Island and the adjacent mainland. The northern limit of the subduction zone is confirmed to be at Brooks Peninsula, where the direction of the crustal motion changes abruptly from ENE to NNE. I use viscoelastic models to explore what percentage of the observed deformation is transient, related to the earthquake cycle, and how much is permanent ongoing deformation, distributed off the continental margin. Previous authors have developed two competing end-member models that can each explain how the Pacific/North America plate convergence is accommodated off Haida Gwaii. These models assume either internal crustal shortening or underthrusting of the Pacific plate. These new GPS data allow me to conclude that underthrusting does occur, and that a small component (<15%) of the observed data reflects long-term deformation. South of Haida Gwaii the distinction between transient and long-term deformation is not as clear; however, I conclude that transient deformation alone cannot fully explain the observed velocities, and so long-term deformation likely must also occur. Part II of the thesis investigates the updip and downdip limits of the seismogenic zone of the Sumatra megathrust fault. Temperature and downdip changes in formation composition are controls proposed for these limits. To examine the thermal control I developed 2-D finite element models of the Sumatra subduction zone with smoothly varying subduction dip, variable thermal properties of the rock units, frictional heating along the rupture plane, and an appropriate thermal state for the incoming plate. The common updip thermal limit for seismic behaviour of 100-150°C occurs close to or at the trench in agreement with the rupture limit of the 2004 earthquake. Off central Sumatra the common downdip thermal limit range of 350-450°C occurs at 30-60 km depth. The 350°C isotherm location is in agreement with the earthquake limits but 450°C is deeper. North of Sumatra, 350°C occurs ~14 km deeper than the earthquake rupture limit. The proposed composition control for the downdip limit, the intersection of the subduction thrust with the forearc mantle, is at a depth of ~30 km, 140-200 km from the trench, in good agreement with the earthquake limits. These results support the conclusion that the Sumatra updip seismogenic limit is thermally controlled, but the downdip limit is governed by the intersection of the downgoing plate with the forearc Moho. / Graduate
46

Experimental and Numerical Studies for Soot Formation in Laminar Coflow Diffusion Flames of Jet A-1 and Synthetic Jet Fuels

Saffaripour, Meghdad 14 January 2014 (has links)
In the present doctoral thesis, fundamental experimental and numerical studies are conducted for the laminar, atmospheric pressure, sooting, coflow diffusion flames of Jet A-1 and synthetic jet fuels. The first part of this thesis presents a comparative experimental study for Jet A-1, which is a widely used petroleum-based fuel, and four synthetically produced alternative jet fuels. The main goals of this part of the thesis are to compare the soot emission levels of the alternative fuels to those of a standard fuel, Jet A-1, and to determine the effect of fuel chemical composition on soot formation characteristics. To achieve these goals, experimental measurements are constructed and performed for flame temperature, soot concentration, soot particle size, and soot aggregate structure in the flames of pre-vaporized jet fuels. The results show that a considerable reduction in soot production, compared to the standard fuel, can be obtained by using synthetic fuels which will help in addressing future regulations. A strong correlation between the aromatic content of the fuels and the soot concentration levels in the flames is observed. The second part of this thesis presents the development and experimental validation of a fully-coupled soot formation model for laminar coflow jet fuel diffusion flames. The model is coupled to a detailed kinetic mechanism to predict the chemical structure of the flames and soot precursor concentrations. This model also provides information on size and morphology of soot particles. The flames of a three-component surrogate for Jet A-1, a three-component surrogate for a synthetic jet fuel, and pure n-decane are simulated using this model. Concentrations of major gaseous species and flame temperatures are well predicted by the model. Soot volume fractions are predicted reasonably well everywhere in the flame, except near the flame centerline where soot concentrations are underpredicted by a factor of up to five. There is an excellent agreement between the computed and measured data for the numbers of primary particles per aggregate and the diameters of primary particles. This model is an important stepping-stone in the drive to simulate industry-relevant and multi-dimensional flames of practical liquid fuels, with detailed chemistry and soot formation.
47

Experimental and Numerical Studies for Soot Formation in Laminar Coflow Diffusion Flames of Jet A-1 and Synthetic Jet Fuels

Saffaripour, Meghdad 14 January 2014 (has links)
In the present doctoral thesis, fundamental experimental and numerical studies are conducted for the laminar, atmospheric pressure, sooting, coflow diffusion flames of Jet A-1 and synthetic jet fuels. The first part of this thesis presents a comparative experimental study for Jet A-1, which is a widely used petroleum-based fuel, and four synthetically produced alternative jet fuels. The main goals of this part of the thesis are to compare the soot emission levels of the alternative fuels to those of a standard fuel, Jet A-1, and to determine the effect of fuel chemical composition on soot formation characteristics. To achieve these goals, experimental measurements are constructed and performed for flame temperature, soot concentration, soot particle size, and soot aggregate structure in the flames of pre-vaporized jet fuels. The results show that a considerable reduction in soot production, compared to the standard fuel, can be obtained by using synthetic fuels which will help in addressing future regulations. A strong correlation between the aromatic content of the fuels and the soot concentration levels in the flames is observed. The second part of this thesis presents the development and experimental validation of a fully-coupled soot formation model for laminar coflow jet fuel diffusion flames. The model is coupled to a detailed kinetic mechanism to predict the chemical structure of the flames and soot precursor concentrations. This model also provides information on size and morphology of soot particles. The flames of a three-component surrogate for Jet A-1, a three-component surrogate for a synthetic jet fuel, and pure n-decane are simulated using this model. Concentrations of major gaseous species and flame temperatures are well predicted by the model. Soot volume fractions are predicted reasonably well everywhere in the flame, except near the flame centerline where soot concentrations are underpredicted by a factor of up to five. There is an excellent agreement between the computed and measured data for the numbers of primary particles per aggregate and the diameters of primary particles. This model is an important stepping-stone in the drive to simulate industry-relevant and multi-dimensional flames of practical liquid fuels, with detailed chemistry and soot formation.
48

A Transient Model for Lead Pipe Corrosion in Water Supply Systems

Islam, Md. Monirul 01 January 2011 (has links)
This thesis focuses on lead related drinking water quality issues in general and on hydraulic transient induced lead pipe corrosion events in water distribution systems in particular. Corrosion is a complex phenomenon, and particularly in water distribution systems, when its already challenging electro-chemical processes are influenced by numerous other physical and chemical factors. Lead pipe corrosion can itself be influenced by both the hydraulic transients and water chemistry events. To understand the relationship among hydraulic, chemical and material processes, an existing numerical 1-D transient-corrosion model for iron-pipe based systems is modified and extended to apply for systems having lead-pipes connected in series. The coupled hydraulic transient and advection-dispersion-reaction model with improved data handling facilities is applied for analyzing the transient induced lead pipe corrosion behaviors in the system for a range of options and establishes interrelationships among the parameters.
49

A Transient Model for Lead Pipe Corrosion in Water Supply Systems

Islam, Md. Monirul 01 January 2011 (has links)
This thesis focuses on lead related drinking water quality issues in general and on hydraulic transient induced lead pipe corrosion events in water distribution systems in particular. Corrosion is a complex phenomenon, and particularly in water distribution systems, when its already challenging electro-chemical processes are influenced by numerous other physical and chemical factors. Lead pipe corrosion can itself be influenced by both the hydraulic transients and water chemistry events. To understand the relationship among hydraulic, chemical and material processes, an existing numerical 1-D transient-corrosion model for iron-pipe based systems is modified and extended to apply for systems having lead-pipes connected in series. The coupled hydraulic transient and advection-dispersion-reaction model with improved data handling facilities is applied for analyzing the transient induced lead pipe corrosion behaviors in the system for a range of options and establishes interrelationships among the parameters.
50

Numerical Modeling of Drug Delivery to Solid Tumor Microvasculature

Soltani, Madjid January 2013 (has links)
Modeling interstitial fluid flow involves processes such as fluid diffusion, convective transport in the extracellular matrix, and extravasation from blood vessels. In all of these processes, computational fluid dynamics can play a crucial role in elucidating the mechanisms of fluid flow in solid tumors and surrounding tissues. To date, microvasculature flow modeling has been most extensively studied with simple tumor shapes and their capillaries at different levels and scales. With our proposed numerical model, however, more complex and realistic tumor shapes and capillary networks can be studied. First, a mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, the interstitial pressure distribution results in a non-uniform distribution of drug particles. Pressure distribution for different values of necrotic radii is examined, and two new parameters, the critical tumor radius and critical necrotic radius, are defined. In specific ranges of these critical dimensions the interstitial fluid pressure is relatively lower, which in turn leads to a diminished opposing force against drug movement and a subsequently higher drug concentration and potentially enhanced therapeutic effects. In this work, the numerical model of fluid flow in solid tumors is further developed to incorporate and investigate non-spherical tumor shapes such as prolate and oblate ones. Using this enhanced model, tumor shape and size effects on drug delivery to solid tumors are then studied. Based on the assumption that drug particles flow with the interstitial fluid, the pressure and velocity maps of the latter are used to illustrate the drug delivery pattern in a solid tumor. Additionally, the effects of the surface area per unit volume of the tissue, as well as vascular and interstitial hydraulic conductivity on drug delivery efficiency, are investigated. Using a tumor-induced microvasculature architecture instead of a uniform distribution of vessels provides a more realistic model of solid tumors. To this end, continuous and discrete mathematical models of angiogenesis were utilized to observe the effect of matrix density and matrix degrading enzymes on capillary network formation in solid tumors. Additionally, the interactions between matrix-degrading enzymes, the extracellular matrix and endothelial cells are mathematically modeled. Existing continuous and discrete models of angiogenesis were modified to impose the effect of matrix density on the solution. The imposition has been performed by a specific function in movement potential. Implementing realistic boundary and initial conditions showed that, unlike in previous models, the endothelial cells accelerate as they migrate toward the tumor. Now, the tumor-induced microvasculature network can be applied to the model developed in Chapters 2 and 3. Once the capillary network was set up, fluid flow in normal and cancerous tissues was numerically simulated under three conditions: constant and uniform distribution of intravascular pressure in the whole domain, a rigid vascular network, and an adaptable vascular network. First, governing equations of sprouting angiogenesis were implemented to specify the different domains for the network and interstitium. Governing equations for flow modeling were introduced for different domains. The conservation laws for mass and momentum, Darcy’s equation for tissue, and a simplified Navier Stokes equation for blood flow through capillaries were then used for simulating interstitial and intravascular flows. Finally, Starling’s law was used to close this system of equations and to couple the intravascular and extravascular flows. The non-continuous behavior of blood and the adaptability of capillary diameter to hemodynamics and metabolic stimuli were considered in blood flow simulations through a capillary network. This approach provided a more realistic capillary distribution network, very similar to that of the human body. This work describes the first study of flow modeling in solid tumors to realistically couple intravascular and extravascular flow through a network generated by sprouting angiogenesis, consisting of one parent vessel connected to the network. Other key factors incorporated in the model for the first time include capillary adaptation, non-continuous viscosity blood, and phase separation of blood flow in capillary bifurcation. Contrary to earlier studies which arbitrarily assumed veins and arteries to operate on opposite sides of a tumor network, the present approach requires the same vessel to run and from the network. Expanding the earlier models by introducing the outlined components was performed in order to achieve a more-realistic picture of blood flow through solid tumors. Results predict an almost doubled interstitial pressure and are in better agreement with human biology compared to the more simplified models generally in use today.

Page generated in 0.0959 seconds