• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 224
  • 90
  • 27
  • 14
  • 11
  • 7
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 526
  • 526
  • 103
  • 103
  • 89
  • 82
  • 71
  • 50
  • 45
  • 45
  • 43
  • 43
  • 39
  • 38
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Structural health monitoring of Attridge Drive overpass

Siddique, Abu Bakkar 05 September 2008
Vibration-based damage detection (VBDD) comprises a family of non-destructive testing methods in which changes to dynamic characteristics are used to track the condition of a structure. Although VBDD methods have been successfully applied to various mechanical systems and to simple beam-like structures, significant challenges remain in extending this technology to complex, spatially distributed structures such as bridges. <p> In the present study, numerical simulations using a calibrated finite element model were used to investigate the use of VBDD methods to detect small-scale damage on a two-span, integral abutment overpass structure located in Saskatoon, Saskatchewan. The small scale damage was defined in this study as the removal of a concrete element from the top surface of the bridge deck, resembling the spalled clear cover of concrete deck of the overpass. Five different VBDD techniques were evaluated, including the Change in Mode Shape, Change in Flexibility, Change in Mode Shape Curvature, Change in Uniform Flexibility Curvature and Damage index methods. In addition, the influence of the size of damage, the orientation of damage geometry, sensor spacing (3 m, 5 m and 7.5 m), the approach used for mode shape normalization, and uncertainty in the measured mode shapes was investigated. <p> It was found that localized damage could be reliably detected and located if the sensors were located within 3 m of the damage (the distance between adjacent girders) and if uncertainty in the mode shapes was attenuated through the use of a sufficient number of repeated trials. Furthermore, studies using a limited sensor installation that could be achieved without interrupting the flow of traffic indicated that small scale damage could be detected and potentially located using sensors that are placed well away from the damaged area, provided uncertainty in mode shape was attenuated.
122

Investigating the Influence of Micro-scale Heterogeneity and Microstructure on the Failure and Mechanical Behaviour of Geomaterials

Khajeh Mahabadi, Omid 30 August 2012 (has links)
The mechanical response of geomaterials is highly influenced by geometrical and material heterogeneity. To date, most modelling practices consider heterogeneity qualitatively and the choice of input parameters can be subjective. In this study, a novel approach to combine detailed micro-scale characterization with modelling of heterogeneous geomaterials is presented. The influence of micro-scale heterogeneity and microcracks on the mechanical response and brittle fracture of a crystalline rock was studied using numerical and experimental tools. An existing Combined Finite-Discrete element (FEM/DEM) code was extended to suit heterogeneous, discontinuous, brittle rocks. By conducting grid micro-indentation and micro-scratch tests, the Young's modulus and fracture toughness of the constituent phases of the rock were obtained and used as accurate input parameters for the numerical models. The models incorporated the exact phase mapping obtained from a MicroCT-scanned specimen and the existing microcrack density obtained from thin section analysis. The results illustrated that by incorporating accurate micromechanical input parameters and the intrinsic rock geometric features, the numerical simulations could more accurately predict the mechanical response of the specimen, including the fracture patterns and tensile strength. The numerical simulations illustrated that microstructural flaws such as microcracks should be included in the models to more accurately reproduce the rock strength. In addition, the differential elastic deformations caused by rock heterogeneity altered the stress distribution in the specimen, creating zones of local tensile stresses, in particular, on the boundaries between different mineral phases. As a result, heterogeneous models exhibited rougher fracture surfaces. MicroCT observations emphasized the influence of heterogeneity and, in particular, biotite grains on the fracture trajectories in the specimens. Favourably oriented biotite flakes and cleavage splitting significantly deviated the cracks. The interaction of the main crack with perpendicular cleavage planes of biotite caused strong crack deviation and termination. Considering heterogeneity and the strength degradation caused by microcracks, the simulations captured reasonably accurate mechanical responses and failure mechanisms for the rock, namely, the nonlinear stress-strain relationships. The insights presented in this study improve the understanding of the role of heterogeneity and microstructure on damage and mechanical behaviour of brittle rock.
123

Numerical Modelling of van der Waals Fluids

Odeyemi, Tinuade A. 19 March 2012 (has links)
Many problems in fluid mechanics and material sciences deal with liquid-vapour flows. In these flows, the ideal gas assumption is not accurate and the van der Waals equation of state is usually used. This equation of state is non-convex and causes the solution domain to have two hyperbolic regions separated by an elliptic region. Therefore, the governing equations of these flows have a mixed elliptic-hyperbolic nature. Numerical oscillations usually appear with standard finite-difference space discretization schemes, and they persist when the order of accuracy of the semi-discrete scheme is increased. In this study, we propose to use a Chebyshev pseudospectral method for solving the governing equations. A comparison of the results of this method with very high-order (up to tenth-order accurate) finite difference schemes is presented, which shows that the proposed method leads to a lower level of numerical oscillations than other high-order finite difference schemes, and also does not exhibit fast-traveling packages of short waves which are usually observed in high-order finite difference methods. The proposed method can thus successfully capture various complex regimes of waves and phase transitions in both elliptic and hyperbolic regimes
124

Structural health monitoring of Attridge Drive overpass

Siddique, Abu Bakkar 05 September 2008 (has links)
Vibration-based damage detection (VBDD) comprises a family of non-destructive testing methods in which changes to dynamic characteristics are used to track the condition of a structure. Although VBDD methods have been successfully applied to various mechanical systems and to simple beam-like structures, significant challenges remain in extending this technology to complex, spatially distributed structures such as bridges. <p> In the present study, numerical simulations using a calibrated finite element model were used to investigate the use of VBDD methods to detect small-scale damage on a two-span, integral abutment overpass structure located in Saskatoon, Saskatchewan. The small scale damage was defined in this study as the removal of a concrete element from the top surface of the bridge deck, resembling the spalled clear cover of concrete deck of the overpass. Five different VBDD techniques were evaluated, including the Change in Mode Shape, Change in Flexibility, Change in Mode Shape Curvature, Change in Uniform Flexibility Curvature and Damage index methods. In addition, the influence of the size of damage, the orientation of damage geometry, sensor spacing (3 m, 5 m and 7.5 m), the approach used for mode shape normalization, and uncertainty in the measured mode shapes was investigated. <p> It was found that localized damage could be reliably detected and located if the sensors were located within 3 m of the damage (the distance between adjacent girders) and if uncertainty in the mode shapes was attenuated through the use of a sufficient number of repeated trials. Furthermore, studies using a limited sensor installation that could be achieved without interrupting the flow of traffic indicated that small scale damage could be detected and potentially located using sensors that are placed well away from the damaged area, provided uncertainty in mode shape was attenuated.
125

Verification Of Empirically Determined Support Systems Of The Kiliclar Highway Tunnel By Numerical Modelling

Celik, Gozde 01 September 2011 (has links) (PDF)
The aim of this study is to determine the geological and geotechnical characteristics of Kili&ccedil / lar Tunnel on Ankara-Kirikkale Highway, to suggest the appropriate support and excavation systems and verify these suggested support systems via numerical modeling. The length of Kili&ccedil / lar Tunnel is 1110 m. The width of tunnel is 16 m, the height is 10 m and the maximum overburden height is 90 m. Since Ankara-Kirikkale Highway consists of 2x3 lanes, the tunnel is designed as a twin tube tunnel. Kili&ccedil / lar Tunnel is planned to be excavated in Gabbro-Diabase and Serpentinite named as Artova Ophiolite Complex. The rock mass is classified by using RMR, Q and NATM classification systems and support systems are determined by using these classification methods. In addition to empirical approaches, 2D finite element analyses are conducted to check the stabilities of seven sections through the tunnel. Results of those analyses pointed out that the support materials determined empirically (4-6 m long bolt with intervals of 1-2 m, 10-20 cm shotcrete, steel sets (wherever required)) are compatible with those recommended after numerical modelling (4-5 m long bolt with intervals of 1.5-2.0 m, 10-20 cm shotcrete, steel sets for entrance and exit sections). Furthermore, the stabilities of the tunnel portals are also studied by numerical analyses and limit equilibrium analyses. Based on the stability analyses performed for both portals, no slope failure is expected at cut slopes with 1H/3V for forehead and for 1H/2V for side slope.
126

Transport Phenomena In Laser Surface Alloying: A Numerical Investigation

Mohan Raj, P 09 1900 (has links)
A comprehensive, transient three-dimensional model of a single-pass laser surface alloying process has been developed and used to examine the heat, momentum and species transport phenomena. A numerical study is performed in a co-ordinate system moving with the laser at a constant scanning speed. In this model a fixed grid enthalpy-porosity approach is used, which predicts the evolutionary pool development. In this model two extreme cases of alloying element and base metal combinations are considered based on their relative melting points. One extreme case is for an alloying element with its melting point much lower than that of the base metal. In this case the alloying element melts almost instantaneously. Hence it is assumed that the alloying element introduced on the melt pool surface is in the molten state. Thus, while solving the species conservation equation a species flux condition is used on the entire melt pool surface. This case is analysed for aluminium alloying element on iron base metal. The final species distribution in the melt pool as well as in the solidified alloy is predicted. The other extreme case is studied for an alloying element with its melting point relatively higher than that of the base metal. In this case all the alloying element particles on the melt pool surface will not melt. Only those particles which fall in the region on the melt pool surface where the local temperature is higher than the melting point of the alloying element will melt. The particles which fall away from this region are advected into the melt pool, due to a strong Marangoni convection on the melt pool surface. If a particle is advected into the inner region in the melt pool (where the temperature is higher than its melting point), it starts melting and thus the molten species mass gets distributed. Hence, the species flux condition at the entire surface of the melt pool is not valid. The particles are tracked in the melt pool by assuming the alloying particles to be spherical in shape and moving without any relative velocity with the surrounding fluid. Simultaneously, the temperature field inside the spherical particle is solved by assuming its surface temperature to be the local temperature in the melt pool. The amount of particle mass that fuses as it passes through a particular control volume is noted. The same procedure is repeated for a large number of particles initiated at various locations on the pool surface, and a statistical distribution of the species mass source in the entire pool is obtained. This species mass source distribution is then used to solve the species conservation equation. Nickel alloying element on aluminium base metal is used to illustrate this case. The numerical results obtained from the two cases are compared with the available experimental results. A qualitative matching is found between the numerical and experimental results.
127

About the Influence of Randomness of Hydraulic Conductivity on Solute Transport in Saturated Soil: Numerical Experiments

Noack, Klaus, Prigarin, S. M. 31 March 2010 (has links) (PDF)
Up-to-date methods of numerical modelling of random fields were applied to investigate some features of solute transport in saturated porous media with stochastic hydraulic conductivity. The paper describes numerical experiments which were performed and presents the first results.
128

Road Embankments on Seasonally-Frozen Peat Foundations

De Guzman, Earl Marvin 09 1900 (has links)
Muskeg or peat deposits cover large areas in northern Manitoba. Test sections of a newly constructed highway on peat were instrumented to investigate their performance and to develop more economical means of construction method. Test Section ‘A’ was constructed with geotextile base layer while Section ‘B’ was with geotextile and corduroys (timber logs). The test sections were constructed during winter for ease in mobilizing construction equipment at the site when the ground was frozen and were instrumented to observe its behaviour and performance. Settlements were measured using monitoring plates and pins. Ground temperatures were measured using thermistors. Porewater pressures were measured using vibrating wire piezometers. Peat in the study area has an average thickness of 4m, with the upper layer classified as fibrous and the lower layer as amorphous with strong to complete decomposition. Standard laboratory tests were conducted on bored samples from the site. Hydraulic conductivity tests were carried out at different vertical pressures to determine its permeability. Thermal conductivity was determined at frozen and unfrozen state of peat. Conventional incremental oedometer tests were conducted to determine the compressibility parameters and secondary compression indices of the peat layers. Constant-rate-of-strain (CRS) tests were also performed to supplement the results obtained from the conventional method. Isotropically-Consolidated Undrained (CIŪ) triaxial tests were carried out to determine the shear strength of peat. A commercially-available computer program was used in the numerical modelling to simulate the field performance of the instrumented sections. The results from numerical modelling were reasonably close to the measured values in the field. Laboratory-scale physical modelling was undertaken to understand further the operating mechanisms involved in the performance of the two test sections under a more controlled environment. Artificial transparent clay that has similar deformation properties with most of the natural clays and peats was used as foundation material. It allows determination of spatial deformations beneath the embankment using Particle Image Velocimetry (PIV) technique. The load-settlement behaviour in the field was also reasonably simulated in the laboratory-scaled physical model. Deformation patterns from PIV indicate that embankment with geotextile layer and corduroy has smaller settlements and lateral movements in the foundation compared to that of the embankment with only geotextile layer.
129

Back Analysis of a Tunnelling Case Study in Weak Rock of the Alpine System in Northern Greece: Validation and Optimization of Design Analysis Based on Ground Characterization and Numerical Simulation

VLACHOPOULOS, NICHOLAS 02 September 2009 (has links)
The backdrop for this research paper is the tunnelling that is currently nearing completion in the Epirus region of Northern Greece, as part of the Egnatia Odos Highway construction. Highly deformed and altered sediments and low grade rock masses dominate the near surface environment creating a variety of technical challenges for tunnelling. Accurate equivalent rock mass performance reductions for tunnels in these materials is complicated by geomorphologic peculiarities such as those found in Flysch materials. The mechanisms of rock-support interaction related to face or near-face reinforcement systems are poorly understood at this time. As well, the mechanics of weak rock materials in the complex deformation regime in advance of a tunnel face are not robustly integrated into current 2D design models. Design decisions are currently possible using empirical techniques and simplified models, but a true optimized and mechanicsbased design process for the various support technologies are not fully developed. This research addresses elements of such issues, such as: use of the Longitudinal Displacement Profile (LDP) of the Convergence-Confinement method of tunnel design, relating 2D numerical models to their distance from the face using the size of the plastic zone as an indicator, near face tunnel support analysis in weak rock masses, boundary condition assessment for numerical modelling of such weak rock masses, the influence of plasticity zones surrounding tunnel excavations, and modelling optimization techniques for weak rock tunnelling in order to optimize the design of such underground structures and better predict near-face deformation and yield development. This work involved the use of 2D and 3D numerical models of tunnel sequencing for numerical simulation of composite material behaviour and sequential tunnel deformation response. / Thesis (Ph.D, Geological Sciences & Geological Engineering) -- Queen's University, 2009-09-01 08:46:30.537
130

NUMERICAL STUDY AND LOAD AND RESISTANCE FACTOR DESIGN (LRFD) CALIBRATION FOR REINFORCED SOIL RETAINING WALLS

HUANG, BING 29 January 2010 (has links)
Load and resistance factor design (LRFD) (often called limit states design (LSD)) has been mandated in the AASHTO Bridge Design Specifications and will be adopted in future editions of Canadian Highway Bridge Design Code for all transportation-related structures including reinforced soil retaining walls. The ultimate objective of this thesis work was to carry out reliability-based analysis for load and resistance factor design calibration for rupture and pullout limit states for steel and geosynthetic reinforced soil walls under self-weight and permanent surcharge loading conditions. In order to meet this objective it was necessary to generate large databases of measured load and resistance data from many sources and in some cases to propose new design models that improve the accuracy of underlying deterministic load and resistance models. Numerical models were also developed to model reinforced soil wall performance. These models were used to investigate load prediction accuracy of current analytical reinforcement load models. An important feature of the calibration method adopted in this study is the use of bias statistics to account for prediction accuracy of the underlying deterministic models for load and resistance calculations, random variability in input parameter values, spatial variation and quality of data. In this thesis, bias is defined as the ratio of measured to predicted value. The most important end product of the work described in this thesis is tabulated resistance factors for rupture and pullout limit states for the internal stability of steel and geosynthetic reinforced soil walls. These factors are developed for geosynthetic reinforced soil wall design using the current AASHTO Simplified Method, a new modified Simplified Method, and the recently proposed K-Stiffness Method. Useful quantitative comparisons are made between these three methods by introducing the concept of computed operational factors of safety. This allows designers to quantify the actual margin of safety using different design approaches. The thesis format is paper-based. Ten of the chapters are comprised of journal papers that have been published (2), are in press (2), in review (3) and the remaining (3) to be submitted once the earlier background papers are accepted. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2010-01-28 18:07:22.284

Page generated in 0.0943 seconds