• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementação do método totalmente acoplado para a resolução de sistemas hidromecânicos em um programa de elementos finitos em MatLab /

Ambiel, José Henrique Krähenbühl January 2018 (has links)
Orientador: Osvaldo Luís Manzoli / Resumo: Materiais porosos constituem uma grande gama de materiais que podem ser encontrados na natureza ou em forma artificial. Rochas reservatório é um exemplo importante desse tipo de material, sendo o estudo delas a motivação principal desse trabalho. O estudo de rochas reservatório, de onde são extraídos gases e petróleo, consiste em um problema físico no qual os sistemas mecânico e hidráulico são acoplados. O acoplamento ocorre pois as deformações (no sistema mecânico) inuenciam as pressão (no sistema hidráulico), que por sua vez inuenciam as tensões (sistema mecânico). As equações governantes do sistema mecânico são mostradas e as do hidráulico deduzidas. Para a resolução do problema, o Método dos Elementos Finitos (MEF) foi utilizado para ambos os sistemas físicos, logo, as equações governantes são apresentadas em sua forma fraca e, então, aproximada pelo MEF. Numericamente, o acoplamento pode ser tratado de diferentes maneiras, seja considerando um dos sistemas de maneira bem pobre tal como fórmulas empíricas simplistas, seja considerado os sistemas de maneira individual, ou então de maneira completa. Essa última maneira de considerar um acoplamento, o acoplamento total, é formulada, programada e testada nesse trabalho. Para validar a implementação, dois problemas foram analisados: Problema de Terzaghi e Problema Mandel, ambos com solução analítica conhecidas. Os resultados obtidos numericamente comparados aos analíticos indicam que o método totalmente acoplado foi bem implem... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Porous materials constitute a wide range of materials that can be found in nature and arti cially. Reservoir rock is an important example of this kind of material, which is the main motivation of this work. The study of reservoir rocks, from which gases and oil are extracted, consists of a physical problem in which mechanical and hydraulic systems are coupled. The coupling occurs because the deformations (in the mechanical system) in uence the pressure (in the hydraulic system), which in turn in uence the stresses (mechanical system). The governing equations of the mechanical system are shown and those of the hydraulic system are deduced. To solve the problem, the Finite Element Method (FEM) is used for both physical systems, so the governing equations are presented in their weak form and then approximated according to the FEM. Numerically, the coupling can be handled in di erent ways, either by considering one of the systems in a very poor way by using simplistic empirical formulas, by considering the systems individually, or in a complete manner. The latter one, the fully-coupled treatment, is formulated, programmed and tested in this work. To validate the implementation, two problems has been analyzed: Terzaghi Problem and Mandel Problem, both with known analytical solutions. The comparison between the results obtained numerically and analytically indicates that the fully coupled method has been well implemented in both 2D and 3D cases. The numerical oscillation existing i... (Complete abstract click electronic access below) / Mestre
2

Implementação do método totalmente acoplado para a resolução de sistemas hidromecânicos em um programa de elementos finitos em MatLab / Implementation of the fully coupled method to solve hydromechanical systems in finite element method program in MatLab

Ambiel, José Henrique Krähenbühl 24 July 2018 (has links)
Submitted by José Henrique Krähenbühl Ambiel (zeambiel@hotmail.com) on 2018-09-28T13:24:06Z No. of bitstreams: 1 Dissertação_JoséAmbiel.pdf: 8234688 bytes, checksum: e8355af378aacfa5b31cc3b2d4f77de7 (MD5) / Approved for entry into archive by Lucilene Cordeiro da Silva Messias null (lubiblio@bauru.unesp.br) on 2018-09-28T18:11:05Z (GMT) No. of bitstreams: 1 ambiel_jhk_me_bauru.pdf: 6828894 bytes, checksum: e1a58fe94084b497e2236056afe8f889 (MD5) / Made available in DSpace on 2018-09-28T18:11:05Z (GMT). No. of bitstreams: 1 ambiel_jhk_me_bauru.pdf: 6828894 bytes, checksum: e1a58fe94084b497e2236056afe8f889 (MD5) Previous issue date: 2018-07-24 / Materiais porosos constituem uma grande gama de materiais que podem ser encontrados na natureza ou em forma artificial. Rochas reservatório é um exemplo importante desse tipo de material, sendo o estudo delas a motivação principal desse trabalho. O estudo de rochas reservatório, de onde são extraídos gases e petróleo, consiste em um problema físico no qual os sistemas mecânico e hidráulico são acoplados. O acoplamento ocorre pois as deformações (no sistema mecânico) inuenciam as pressão (no sistema hidráulico), que por sua vez inuenciam as tensões (sistema mecânico). As equações governantes do sistema mecânico são mostradas e as do hidráulico deduzidas. Para a resolução do problema, o Método dos Elementos Finitos (MEF) foi utilizado para ambos os sistemas físicos, logo, as equações governantes são apresentadas em sua forma fraca e, então, aproximada pelo MEF. Numericamente, o acoplamento pode ser tratado de diferentes maneiras, seja considerando um dos sistemas de maneira bem pobre tal como fórmulas empíricas simplistas, seja considerado os sistemas de maneira individual, ou então de maneira completa. Essa última maneira de considerar um acoplamento, o acoplamento total, é formulada, programada e testada nesse trabalho. Para validar a implementação, dois problemas foram analisados: Problema de Terzaghi e Problema Mandel, ambos com solução analítica conhecidas. Os resultados obtidos numericamente comparados aos analíticos indicam que o método totalmente acoplado foi bem implementado, tanto em 2D quanto em 3D. Nesse trabalho também é mostrada a oscilação numérica que há em problemas de acoplamento hidromecânico e uma das formas de amenizá-la. / Porous materials constitute a wide range of materials that can be found in nature and arti cially. Reservoir rock is an important example of this kind of material, which is the main motivation of this work. The study of reservoir rocks, from which gases and oil are extracted, consists of a physical problem in which mechanical and hydraulic systems are coupled. The coupling occurs because the deformations (in the mechanical system) in uence the pressure (in the hydraulic system), which in turn in uence the stresses (mechanical system). The governing equations of the mechanical system are shown and those of the hydraulic system are deduced. To solve the problem, the Finite Element Method (FEM) is used for both physical systems, so the governing equations are presented in their weak form and then approximated according to the FEM. Numerically, the coupling can be handled in di erent ways, either by considering one of the systems in a very poor way by using simplistic empirical formulas, by considering the systems individually, or in a complete manner. The latter one, the fully-coupled treatment, is formulated, programmed and tested in this work. To validate the implementation, two problems has been analyzed: Terzaghi Problem and Mandel Problem, both with known analytical solutions. The comparison between the results obtained numerically and analytically indicates that the fully coupled method has been well implemented in both 2D and 3D cases. The numerical oscillation existing in hydrmechanical coupled problems is also shown and one of the ways to minimize it is presented.

Page generated in 0.1203 seconds