• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • Tagged with
  • 20
  • 20
  • 20
  • 16
  • 16
  • 14
  • 12
  • 11
  • 11
  • 10
  • 10
  • 8
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo do calor específico de um sistema de dois níveis acoplados a um banho fermiônico / Specific heat study of two-level system coupled to fermionic bath

Ferreira, João Vitor Batista 19 September 1995 (has links)
Estudamos o calor específico de um sistema formado por duas impurezas adsorvidas, sem spin, em meio fermiônico (banda de condução do metal) e que contém um buraco (elétron) tunelando entre elas. Modelamos esse sistema por dois níveis acoplados e que sofrem interação Coulombiana com a banda de condução. Através da análise das curvas de calor específico, investigamos a alteração (renormalização) da taxa de tunelamento em função da interação eletrostática entre os elétrons da banda de condução e o buraco tunelante e da separação entre as impurezas. Utilizamos o Hamiltoniano de Kondo de tunelamento para representar esse modelo e usamos o Grupo de Renormalização Numérico para diagonalizá-lo. Analisamos a influência de cada termo do Hamiltoniano na renormalização da taxa de tunelamento e verificamos que a troca de paridade das funções de onda do buraco tunelante e dos elétrons da banda desempenha papel essencial. Encontramos uma expressão que combina a distância entre as impurezas e a interação Coulombiana em um único parâmetro (a), de tal forma que sistemas diferentes mas que apresentam o mesmo a e a mesma taxa de tunelamento livre têm a mesma curva de calor específico. / We calculate the specific heat of the two-spinless impurity coupled to a fermionic bath. The model takes into account the tunneling of a hole between the impurities. The two-level system representing the impurities is coupled electrostatically with the conduction electrons. Through the specific heat curves, we analyse the renormalization of the tunneling rate as a function of the Coulomb interaction and distance between impurities. The Numerical Renormalization Group is used to diagonalize the tunneling Hamiltonian proposed by Kondo. We analyse the role of each term of the Hamiltonian in the renormalization of the bare tunneling rate and we stress the importance of the exchange parity between impurity states and conduction states. Finally, a parameter a, is found which combines the distance between impurities and Coulomb interaction in such a way that every curve is specified only by a and the bare tunneling rate.
2

Grupo de renormalização numérico com banda assimétrica / Numerical renormalization group for asymmetric conduction band

Teixeira, Amilton de Matos 12 July 2007 (has links)
Este trabalho apresenta um tratamento do Grupo de Renormalização Numérico (GRN) que permite a inclusão de assimetrias na banda de condução, como a provocada por campo magnetostático aplicado a sistemas de spins localizados em metais. Resultados para calor específico e suscetibilidade magnética de spin são obtidos para os modelos de Kondo de dois canais (MK2C), de Falikov-Kimball (MFK) e o modelo de nível ressonante na presença dessas assimetrias. São apresentadas soluções para lidar com as oscilações espúrias das curvas do calor específico, inerentes ao GRN. Tais abordagens, contribuíram de forma determinante para a viabilidade dos resultados apresentados aqui para essas grandezas. / This work presents an approach to the Numerical Renormalization Group which allows for asymmetries in the conduction band, as those brought about by magnetostatic field applied to a system of localized spin in metal. Results for specific heat and magnetic susceptibility are shown for the two-channel Kondo model, as well for the Falikov-Kimball and resonant level models, in the presence of such asymmetry. In addition, novel treatments were described in order to smooth out the curves of specific heat from the oscilating profile that comes along from NRG calculations. This was of outmost importance for the viability of the results presented here.
3

Análise teórica da espectroscopia de tunelamento de impurezas magnéticas adsorvidas em metais / Theoretical analysis of the tunneling spectroscopy of magnetic impurities in metals

Seridonio, Antonio Carlos Ferreira 15 September 2005 (has links)
Resultados do Grupo de Renormalização Numérico (GRN) para a condutância linear dependente da temperatura associada a corrente de tunelamento através de uma ponta de prova nas proximidades de uma impureza magnética são apresentados. Nós usamos o Modelo de Anderson de uma impureza para descrever o metal hospedeiro e um Hamiltoniano livre para simular a ponta de prova do MVT (Microscópio de Varredura por Tunelamento). O cálculo da condutância é obtida a partir da fórmula de Kubo com o Hamiltoniano de tunelamento tratado como uma perturbação com dois canais de tunelamento, ponta-impureza e ponta-substrato, com o objetivo de descrever esse sistema que está totalmente fora do equilíbrio. Esse cálculo é guiado pelo GRN de Wilson para determinar a fórmula da condutância em termos de densidades espectrais: a densidade local da impureza e a densidade relativa ao primeiro sítio de condução da rede tight-binding do GRN. Esse resultado para o operador do GRN transforma esse objeto teórico em uma quantidade mensurável. Mostramos sob condições especiais, que o gráfico da condutância em função da temperatura é uma curva universal. Como função da posição ponta-impureza, as correntes de tunelamento mostram oscilações de Friedel, que determinam o tamanho da nuvem Kondo. Finalmente, mostramos como função da energia da impureza, a corrente da impureza para a ponta mostra um platô de Kondo. A interferência entre essa corrente e a que flui da banda de condução para a ponta exibe anti-ressonâncias de Fano como as observadas em medidas espectroscópicas. / Numerical Renormalization Group (NRG) results for the temperature dependent linear conductance associated with the scanning-tunneling current through a probe near a magnetic impurity are reported. We used the Single Impurity Anderson Model to describe the host metal and a free electron Hamiltonian to simulate a STM (Scanning Tunneling Microscope) biased tip. The calculation of the conductance is obtained from the Kubo Formula with the Tunneling Hamiltonian treated as a perturbation with two tunneling channels, STM tip-impurity and STM tip-host metal, with the objective to describe this fully nonequilibrium system. This calculation is guided by Wilson\'s NRG to determine a conductance formula as a funciton of spectral densities: the local impurity density and the density relative to the first conduction site of the NRG tight-binding chain. This result for the NRG operator transforms this theoretical object into a measurable quantity. We show that, under special conditions, plotted as a function of temperature, this zero-bias conductance follows a universal curve. As a function of tip-impurity separation, the tunneling currents display Friedel Oscilations, which determine the size of the Kondo cloud. Finally, plotted as a function of impurity energy, the current from the impurity to the tip displays a Kondo plateau. The inferference between this current and that flowing from the conduction band to the tip displays Fano anti-ressonances analogous to those seen in spectroscopic measurements.
4

Análise teórica da espectroscopia de tunelamento de impurezas magnéticas adsorvidas em metais / Theoretical analysis of the tunneling spectroscopy of magnetic impurities in metals

Antonio Carlos Ferreira Seridonio 15 September 2005 (has links)
Resultados do Grupo de Renormalização Numérico (GRN) para a condutância linear dependente da temperatura associada a corrente de tunelamento através de uma ponta de prova nas proximidades de uma impureza magnética são apresentados. Nós usamos o Modelo de Anderson de uma impureza para descrever o metal hospedeiro e um Hamiltoniano livre para simular a ponta de prova do MVT (Microscópio de Varredura por Tunelamento). O cálculo da condutância é obtida a partir da fórmula de Kubo com o Hamiltoniano de tunelamento tratado como uma perturbação com dois canais de tunelamento, ponta-impureza e ponta-substrato, com o objetivo de descrever esse sistema que está totalmente fora do equilíbrio. Esse cálculo é guiado pelo GRN de Wilson para determinar a fórmula da condutância em termos de densidades espectrais: a densidade local da impureza e a densidade relativa ao primeiro sítio de condução da rede tight-binding do GRN. Esse resultado para o operador do GRN transforma esse objeto teórico em uma quantidade mensurável. Mostramos sob condições especiais, que o gráfico da condutância em função da temperatura é uma curva universal. Como função da posição ponta-impureza, as correntes de tunelamento mostram oscilações de Friedel, que determinam o tamanho da nuvem Kondo. Finalmente, mostramos como função da energia da impureza, a corrente da impureza para a ponta mostra um platô de Kondo. A interferência entre essa corrente e a que flui da banda de condução para a ponta exibe anti-ressonâncias de Fano como as observadas em medidas espectroscópicas. / Numerical Renormalization Group (NRG) results for the temperature dependent linear conductance associated with the scanning-tunneling current through a probe near a magnetic impurity are reported. We used the Single Impurity Anderson Model to describe the host metal and a free electron Hamiltonian to simulate a STM (Scanning Tunneling Microscope) biased tip. The calculation of the conductance is obtained from the Kubo Formula with the Tunneling Hamiltonian treated as a perturbation with two tunneling channels, STM tip-impurity and STM tip-host metal, with the objective to describe this fully nonequilibrium system. This calculation is guided by Wilson\'s NRG to determine a conductance formula as a funciton of spectral densities: the local impurity density and the density relative to the first conduction site of the NRG tight-binding chain. This result for the NRG operator transforms this theoretical object into a measurable quantity. We show that, under special conditions, plotted as a function of temperature, this zero-bias conductance follows a universal curve. As a function of tip-impurity separation, the tunneling currents display Friedel Oscilations, which determine the size of the Kondo cloud. Finally, plotted as a function of impurity energy, the current from the impurity to the tip displays a Kondo plateau. The inferference between this current and that flowing from the conduction band to the tip displays Fano anti-ressonances analogous to those seen in spectroscopic measurements.
5

Grupo de renormalização numérico com banda assimétrica / Numerical renormalization group for asymmetric conduction band

Amilton de Matos Teixeira 12 July 2007 (has links)
Este trabalho apresenta um tratamento do Grupo de Renormalização Numérico (GRN) que permite a inclusão de assimetrias na banda de condução, como a provocada por campo magnetostático aplicado a sistemas de spins localizados em metais. Resultados para calor específico e suscetibilidade magnética de spin são obtidos para os modelos de Kondo de dois canais (MK2C), de Falikov-Kimball (MFK) e o modelo de nível ressonante na presença dessas assimetrias. São apresentadas soluções para lidar com as oscilações espúrias das curvas do calor específico, inerentes ao GRN. Tais abordagens, contribuíram de forma determinante para a viabilidade dos resultados apresentados aqui para essas grandezas. / This work presents an approach to the Numerical Renormalization Group which allows for asymmetries in the conduction band, as those brought about by magnetostatic field applied to a system of localized spin in metal. Results for specific heat and magnetic susceptibility are shown for the two-channel Kondo model, as well for the Falikov-Kimball and resonant level models, in the presence of such asymmetry. In addition, novel treatments were described in order to smooth out the curves of specific heat from the oscilating profile that comes along from NRG calculations. This was of outmost importance for the viability of the results presented here.
6

Estudo do calor específico de um sistema de dois níveis acoplados a um banho fermiônico / Specific heat study of two-level system coupled to fermionic bath

João Vitor Batista Ferreira 19 September 1995 (has links)
Estudamos o calor específico de um sistema formado por duas impurezas adsorvidas, sem spin, em meio fermiônico (banda de condução do metal) e que contém um buraco (elétron) tunelando entre elas. Modelamos esse sistema por dois níveis acoplados e que sofrem interação Coulombiana com a banda de condução. Através da análise das curvas de calor específico, investigamos a alteração (renormalização) da taxa de tunelamento em função da interação eletrostática entre os elétrons da banda de condução e o buraco tunelante e da separação entre as impurezas. Utilizamos o Hamiltoniano de Kondo de tunelamento para representar esse modelo e usamos o Grupo de Renormalização Numérico para diagonalizá-lo. Analisamos a influência de cada termo do Hamiltoniano na renormalização da taxa de tunelamento e verificamos que a troca de paridade das funções de onda do buraco tunelante e dos elétrons da banda desempenha papel essencial. Encontramos uma expressão que combina a distância entre as impurezas e a interação Coulombiana em um único parâmetro (a), de tal forma que sistemas diferentes mas que apresentam o mesmo a e a mesma taxa de tunelamento livre têm a mesma curva de calor específico. / We calculate the specific heat of the two-spinless impurity coupled to a fermionic bath. The model takes into account the tunneling of a hole between the impurities. The two-level system representing the impurities is coupled electrostatically with the conduction electrons. Through the specific heat curves, we analyse the renormalization of the tunneling rate as a function of the Coulomb interaction and distance between impurities. The Numerical Renormalization Group is used to diagonalize the tunneling Hamiltonian proposed by Kondo. We analyse the role of each term of the Hamiltonian in the renormalization of the bare tunneling rate and we stress the importance of the exchange parity between impurity states and conduction states. Finally, a parameter a, is found which combines the distance between impurities and Coulomb interaction in such a way that every curve is specified only by a and the bare tunneling rate.
7

Influência do efeito Kondo na condutância de contatos pontuais de superfícies metálicas. / The Kondo effect influence on the conductance of pontual contacts on metallic surfaces.

Seridonio, Antonio Carlos Ferreira 05 April 2002 (has links)
A microscopia de varredura por tunelamento (MVT) é uma nova maneira de se observar experimentalmente o efeito Kondo. Quando uma concentração de átomos é adicionada a um meio metálico (metal hospedeiro), a corrente de tunelamento passa a depender de fatores de origem não geométrica. O rearranjo das cargas dentro do volume metálico (oscilações de Friedel) e o espalhamento de spins eletrônicos (efeito Kondo), devido a introdução de impurezas, mudam o valor da corrente e influenciam o levantamento da topografia do espécime examinado. Esses fatores devem ser considerados para que a topografia gerada seja condizente com a topografia verdadeira. Utilizamos como modelo teórico para descrição desse sistema, o modelo de Anderson de uma impureza para simular o espécime examinado e uma banda de condução livre para representar os elétrons da agulha metálica do microscópio. Nossa abordagem usa a fórmula de Kubo para o cálculo da corrente de tunelamento, supondo Hamiltoniano de tunelamento como perturbação e o potencial elétrico no regime linear. Apresentamos inicialmente um estudo para o Modelo do Nível Ressonante, isto é, o modelo de Anderson sem correlação, com o objetivo de demonstrar a precisão do método do Grupo de Renormalização Numérico. Em seguida, analisamos o Modelo de Anderson correlacionado. Os resultados tanto para a condutância em função da distância entre ponta e impureza a temperatura fixa, como para condutância em função da temperatura e distância fixa, permitem interpretação física transparente desde que levem em conta a ressonância de Kondo na densidade espectral. / The scanning tunneling microscopy (STM) is a new way to observe experimentally the Kondo effect. When a concentration of atoms id added to a sample (host metal), the tunneling current begins to depend on other non-geometric factors. The rearrangement of charges in the metallic bulk (Friedel oscillations) and the electronic spin scattering (Kondo effect), due to the presence of impurities, change the current value and affect the sample´s topography. These factors must be considered in order to make a correspondence between the generated topography with the true one. As a theoretical description of the system, we use the single impurity Anderson model to simulate the examined sample and a free conduction band to represent the electrons of the microscope metallic tip. Our treatment uses the Kubo formula to calculate the tunneling current, assuming the tunneling Hamiltonian as a perturbation and the electric potential in the linear regime. We initially present a study of the Resonant Level Model, i.e, the Anderson model without correlaction, to show the accuary of the Numerical Renormalization Group procedure. In the next step, we analyse the correlated Anderson model. The dependence of the conductance on tip-impurity distance, at constant temperature, and its dependence on temperature for constant tip-impurity distance, allow a clear physical interpretation after taking into account the Kondo resonance in the spectral density.
8

Modelo de Anderson de dois canais. / Two-channel Anderson Model.

Ferreira, João Vitor Batista 18 December 2000 (has links)
Nozières e Blandin generalizaram o Modelo Kondo através da inclusão de mais graus de liberdade. Eles investigaram um sistema formado de uma impureza magnética em um metal hospedeiro, considerando a estrutura orbital da impureza, campo cristalino e interações spin-órbita. Este sistema é representado pelo Hamiltoniano de Kondo Multicanal: a interação entre a impureza local e a banda de condução é feita via canais (cada canal representa um conjunto de números quânticos bem definidos). Nozières e Blandin mostraram o aparecimento de um ponto fixo anômalo no regime de acoplamento finito. Esse ponto fixo anômalo pode explicar o comportamento não-líquido de Fermi de compostos de terras-raras e actinídeos. Cox e colaboradores usaram o Hamiltoniano Kondo Quadrupolar para representar sistemas de férmions pesados em urânio e óxidos supercondutores de alta temperatura, os quais podem ser mapeados em um Modelo Kondo de dois canais. Como o Modelo Kondo tradicional (um canal) é o limite de baixa temperatura do Modelo Anderson, é interessante também generalizar este último para incluir mais canais. Nesta tese nós mostramos que o mesmo procedimento trivial, o qual generaliza o Hamiltoniano Kondo, não funciona para o Modelo de Anderson. Nós usamos um Hamiltoniano proposto por Cox para representar o Modelo de Anderson de dois canais. Usando a transformação de Schrieffer-Wolff nós demonstramos que este Hamiltoniano é equivalente ao Hamiltoniano Kondo de dois canais em baixas temperaturas. E finalmente, nós aplicamos o Grupo de Renormalização Numérico para investigar os níveis de mais baixa energia, a suscetibilidade magnética e o calor específico. / Nozières and Blandin generalized the Kondo Model by including more degrees of freedom. They investigated a system made of magnetic impurity in a metal host, considering impurity orbital structure, crystalline field and spin-orbit interactions. This system is represented by multichannel Kondo Hamiltonian: the interaction between local impurity and conduction band is done via channels (each channel represents a set of well defined quantum numbers). They showed that anomalous fixed point appears at finite coupling. The anomalous fixed point can explain the non-Fermi Liquid behaviour of rare earths and actinides compounds. Cox et al used a quadrupolar Kondo Hamiltonian for uranium heavy-fermion materials and high-temperature superconducting oxides, which can be mapped to a two-channel Kondo Model. Since Kondo Model is a low temperature limit of Anderson Model, would be interesting to generalize this last one including many channels. In this thesis we show that the same trivial procedure, which generalizes the Kondo Hamiltonian, does not work with the Anderson Model. We use a model Hamiltonian proposed by Cox to represent the two-channel Anderson Model. Using the Schrieffer-Wolf transformation we prove this Hamiltonian is equivalent to the two-channel Kondo Hamiltonian. And finally, we have applied Numerical Renormalization Group calculations to investigate the lowest energy levels, susceptibility and specific heat.
9

Modelo de Anderson de dois canais. / Two-channel Anderson Model.

João Vitor Batista Ferreira 18 December 2000 (has links)
Nozières e Blandin generalizaram o Modelo Kondo através da inclusão de mais graus de liberdade. Eles investigaram um sistema formado de uma impureza magnética em um metal hospedeiro, considerando a estrutura orbital da impureza, campo cristalino e interações spin-órbita. Este sistema é representado pelo Hamiltoniano de Kondo Multicanal: a interação entre a impureza local e a banda de condução é feita via canais (cada canal representa um conjunto de números quânticos bem definidos). Nozières e Blandin mostraram o aparecimento de um ponto fixo anômalo no regime de acoplamento finito. Esse ponto fixo anômalo pode explicar o comportamento não-líquido de Fermi de compostos de terras-raras e actinídeos. Cox e colaboradores usaram o Hamiltoniano Kondo Quadrupolar para representar sistemas de férmions pesados em urânio e óxidos supercondutores de alta temperatura, os quais podem ser mapeados em um Modelo Kondo de dois canais. Como o Modelo Kondo tradicional (um canal) é o limite de baixa temperatura do Modelo Anderson, é interessante também generalizar este último para incluir mais canais. Nesta tese nós mostramos que o mesmo procedimento trivial, o qual generaliza o Hamiltoniano Kondo, não funciona para o Modelo de Anderson. Nós usamos um Hamiltoniano proposto por Cox para representar o Modelo de Anderson de dois canais. Usando a transformação de Schrieffer-Wolff nós demonstramos que este Hamiltoniano é equivalente ao Hamiltoniano Kondo de dois canais em baixas temperaturas. E finalmente, nós aplicamos o Grupo de Renormalização Numérico para investigar os níveis de mais baixa energia, a suscetibilidade magnética e o calor específico. / Nozières and Blandin generalized the Kondo Model by including more degrees of freedom. They investigated a system made of magnetic impurity in a metal host, considering impurity orbital structure, crystalline field and spin-orbit interactions. This system is represented by multichannel Kondo Hamiltonian: the interaction between local impurity and conduction band is done via channels (each channel represents a set of well defined quantum numbers). They showed that anomalous fixed point appears at finite coupling. The anomalous fixed point can explain the non-Fermi Liquid behaviour of rare earths and actinides compounds. Cox et al used a quadrupolar Kondo Hamiltonian for uranium heavy-fermion materials and high-temperature superconducting oxides, which can be mapped to a two-channel Kondo Model. Since Kondo Model is a low temperature limit of Anderson Model, would be interesting to generalize this last one including many channels. In this thesis we show that the same trivial procedure, which generalizes the Kondo Hamiltonian, does not work with the Anderson Model. We use a model Hamiltonian proposed by Cox to represent the two-channel Anderson Model. Using the Schrieffer-Wolf transformation we prove this Hamiltonian is equivalent to the two-channel Kondo Hamiltonian. And finally, we have applied Numerical Renormalization Group calculations to investigate the lowest energy levels, susceptibility and specific heat.
10

Influência do efeito Kondo na condutância de contatos pontuais de superfícies metálicas. / The Kondo effect influence on the conductance of pontual contacts on metallic surfaces.

Antonio Carlos Ferreira Seridonio 05 April 2002 (has links)
A microscopia de varredura por tunelamento (MVT) é uma nova maneira de se observar experimentalmente o efeito Kondo. Quando uma concentração de átomos é adicionada a um meio metálico (metal hospedeiro), a corrente de tunelamento passa a depender de fatores de origem não geométrica. O rearranjo das cargas dentro do volume metálico (oscilações de Friedel) e o espalhamento de spins eletrônicos (efeito Kondo), devido a introdução de impurezas, mudam o valor da corrente e influenciam o levantamento da topografia do espécime examinado. Esses fatores devem ser considerados para que a topografia gerada seja condizente com a topografia verdadeira. Utilizamos como modelo teórico para descrição desse sistema, o modelo de Anderson de uma impureza para simular o espécime examinado e uma banda de condução livre para representar os elétrons da agulha metálica do microscópio. Nossa abordagem usa a fórmula de Kubo para o cálculo da corrente de tunelamento, supondo Hamiltoniano de tunelamento como perturbação e o potencial elétrico no regime linear. Apresentamos inicialmente um estudo para o Modelo do Nível Ressonante, isto é, o modelo de Anderson sem correlação, com o objetivo de demonstrar a precisão do método do Grupo de Renormalização Numérico. Em seguida, analisamos o Modelo de Anderson correlacionado. Os resultados tanto para a condutância em função da distância entre ponta e impureza a temperatura fixa, como para condutância em função da temperatura e distância fixa, permitem interpretação física transparente desde que levem em conta a ressonância de Kondo na densidade espectral. / The scanning tunneling microscopy (STM) is a new way to observe experimentally the Kondo effect. When a concentration of atoms id added to a sample (host metal), the tunneling current begins to depend on other non-geometric factors. The rearrangement of charges in the metallic bulk (Friedel oscillations) and the electronic spin scattering (Kondo effect), due to the presence of impurities, change the current value and affect the sample´s topography. These factors must be considered in order to make a correspondence between the generated topography with the true one. As a theoretical description of the system, we use the single impurity Anderson model to simulate the examined sample and a free conduction band to represent the electrons of the microscope metallic tip. Our treatment uses the Kubo formula to calculate the tunneling current, assuming the tunneling Hamiltonian as a perturbation and the electric potential in the linear regime. We initially present a study of the Resonant Level Model, i.e, the Anderson model without correlaction, to show the accuary of the Numerical Renormalization Group procedure. In the next step, we analyse the correlated Anderson model. The dependence of the conductance on tip-impurity distance, at constant temperature, and its dependence on temperature for constant tip-impurity distance, allow a clear physical interpretation after taking into account the Kondo resonance in the spectral density.

Page generated in 0.1303 seconds