Spelling suggestions: "subject:"anumerical simulation FEM"" "subject:"bnumerical simulation FEM""
1 |
Contribution à l’amélioration du processus d’industrialisation du laminage transversal / A contribution to the industrialization of the cross wedge rolling processGutierrez, Catalina 26 September 2017 (has links)
Le laminage transversal est un procédé de mise en forme où un lopin cylindrique est déformé plastiquement en une pièce axisymétrique comportant des réductions de diamètre. Dans le processus de fabrication de bielles, le procédé est utilisé pour l’opération de répartition avant les opérations d’estampage. Par rapport au procédé de laminage à retour, il permet d’atteindre de meilleures mises au mille et de réduire les temps de cycle. L’industrialisation de ce procédé se heurte toutefois à des difficultés liées pour l’essentiel à la conception des outillages.Ces travaux de thèse visent à améliorer le processus d’industrialisation du laminage transversal par une réduction des temps de développement des outillages et par l’allongement de leur durée de vie. Pour cela, deux axes ont été identifiés. D’une part l’amélioration et la formalisation de la méthodologie de conception des outillages et d’autre part, l’identification et la caractérisation des phénomènes défauts se produisant à grand nombre de cycle et provocant l’arrêt de l’outillage.Ces travaux de thèse s’orientent au tour de trois axes majeurs. Premièrement, l’évaluation du potentiel prédictif de la simulation numérique du laminage transversal et sa robustesse vis-à-vis des paramètres numériques et du procédé. Deuxièmement, la mise en place d’un processus de conception d’outillage comportant d’un côté une méthodologie de conception permettant de définir les paramètres de l’outillage en s’appuyant d’un autre côté sur la simulation numérique du procédé. Troisièmement, l’identification et la caractérisation des zones d’usure et ses effets sur la pièce laminée / Cross wedge rolling (CWR) is a metal forming process used in the automotive industry. One of its applications is in the manufacturing process of connecting rods. CWR transforms a cylindrical billet into a complex axisymmetrical shape with an accurate distribution of material. This preform is forged into shape in a forging die. CWR industrialization has still some limitations, mainly the designing of the tools. This thesis work seeks to improve CWR industrialization by reducing the time needed for the design of the tools and by increasing CWR tool lifecycle. In order to achieve these goals, two main axes are identified: improving the tool design procedure and identifying the physical phenomenon affecting the stability of the process, mainly tool wear.This research work is based upon three main topics. First, evaluating of the predictability of the numerical simulation of the CWR process and its robustness towards the numerical parameters of the model and the process parameters. Second, implementing a design methodology that allows the designer to choose the geometrical parameters of the wedge and evaluating the resultant geometry of the tool through the numerical simulations. And third, identifying the wear zones of the tool and the factors leading to its development
|
2 |
Time-dependent chemo-electromechanical behavior of hydrogelbased structuresLeichsenring, Peter, Wallmersperger, Thomas 13 August 2020 (has links)
Charged hydrogels are ionic polymer gels and belong to the class of smart materials. These gels are multiphasic materials which consist of a solid phase, a fluid phase and an ionic phase. Due to the presence of bound charges these materials are stimuli-responsive to electrical or chemical loads. The application of electrical or chemical stimuli as well as mechanical loads lead to a viscoelastic response. On the macroscopic scale, the response is governed by a local reversible release or absorption of water which, in turn, leads to a local decrease or increase of mass and a respective volume change.
Furthermore, the chemo-electro-mechanical equilibrium of a hydrogel depends on the chemical composition of the gel and the surrounding solution bath. Due to the presence of bound charges in the hydrogel, this system can be understood as an osmotic cell where differences in the concentration of mobile ions in the gel and solution domain lead to an osmotic pressure difference.
In the present work, a continuum-based numerical model is presented in order to describe the time-dependent swelling behavior of hydrogels. The numerical model is based on the Theory of Porous Media and captures the fluid-solid, fluid-ion and ion-ion interactions. As a direct consequence of the chemo-electro-mechanical equilibrium, the corresponding boundary conditions are defined following the equilibrium conditions. For the interaction of the hydrogel with surrounding mechanical structures, also respective jump condtions are formulated. Finaly, numerical results of the time-dependent behavior of a hydrogel-based chemo-sensor will be presented.
|
Page generated in 0.1017 seconds