• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 42
  • 42
  • 11
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effects of light and nutrients on the cell cycle of the diatom, Chaetoceros simplex var. calcitrans

Bresnan, Eileen January 2000 (has links)
No description available.
2

How does nutrient limitation affect expression of assimilatory genes within a photosynthetic microbial mat community in Yellowstone National Park?

January 2012 (has links)
abstract: Microbial mat communities that inhabit hot springs in Yellowstone National Park have been studied for their biodiversity, energetics and evolutionary history, yet little is know about how these communities cope with nutrient limitation. In the present study the changes in assimilatory gene expression levels for nitrogen (nrgA), phosphorus (phoA), and iron (yusV) were measured under various nutrient enrichment experiments. While results for nrgA and phoA were inconclusive, results for yusV showed an increase in expression with the addition of N and Fe. This is the first data that shows the impact of nutrients on siderophore uptake regulation in hot spring microbes. / Dissertation/Thesis / M.S. Biology 2012
3

Phytoplanktonic primary production along a eutrophic, turbid estuarine gradient (Colne estuary, UK)

Kocum, Esra January 1998 (has links)
No description available.
4

The effect of resource stoichiometry on fish and macroinvertebrate nutrient excretion

McManamay, Ryan A. 16 January 2008 (has links)
Consumer-driven nutrient cycling has been shown to be an important process in supplying inorganic nutrients to autotrophic and heterotrophic organisms in aquatic ecosystems. Theory indicates that consumer nutrient excretion is influenced primarily by an organism's nutrient composition; however, an organism's diet should also play an important role in nutrient excretion, especially if the consumer is nutrient limited. This study asks the question, how does diet influence nutrient excretion of consumers at different trophic levels? Macroinvertebrates and fish were collected from six streams and nitrogen (N) and phosphorus (P) excretion were quantified. Epilithon, leaf detritus, and seston (fine particulate organic matter in transport) were collected and analyzed for carbon (C), nitrogen (N), and phosphorus (P) content in an attempt to qualitatively assess the nutritional status of the diet of primary consumers. Macroinvertebrates were also analyzed for C, N, and P content to assess their nutritional composition in relation to their excretion and also to assess the nutritional composition of the diet of predatory insects and fish. Fish were also analyzed for C, N, and P. Similar to theoretical predictions, fish and macroinvertebrate P excretion was negatively related to P content and the N:P excretion ratio was negatively related to the body N:P ratio. However, this relationship was driven primarily by two phosphorus rich species, mottled sculpin in the fish and crayfish in the macroinvertebrates. Some relationships did emerge between consumer excretion and diet. For example, hydropsychid caddisflies had the highest macroinvertebrate P excretion, possibly explained by the low N:P of seston. However, shredders, eating on a very low N and P diet of leaf detritus, had very low N and P excretion. The relationship between consumers, their food, and nutrient excretion is a matter of mass balance. If the food N:P ratio is higher than that of the consumer, then the N:P excretion should be higher than the consumer N:P and the food N:P, especially if organisms are P-limited. However, N:P excretion by macroinvertebrates and fish were very similar despite large differences in diet. The majority of macroinvertebrates and fish had a lower N:P excretion ratio than the predicted N:P of their food, possibly indicating that 1) consumers were either selectively consuming more P-rich foods than the diets that I assigned them or 2) consumers are generally not N or P limited or influenced by the N or P in their diet. Mottled sculpin and crayfish were the only organisms with a higher N:P excretion than their resources and both had a higher %P than the other fish and macroinvertebrates, respectively. High N:P excretion along with high phosphorus content is indicative of P-limitation. Macroinvertebrates and fish, excluding mottled sculpin and crayfish, had a lower N:P excretion and the N:P ratio of the water column. If consumers do play a role in nutrient dynamics, then consumers could alter the relative abundance of nitrogen and phosphorus by supplying more phosphorus. However, the presence of a P-limited organism, such as mottled sclupin or crayfish, could alter the relative abundance of nitrogen and phosphorus by supplying less phosphorus. / Master of Science
5

Regulation of bacterial production in the Råne estuary, northern Baltic Sea / Reglering av bakterieproduktion i Råneälvens mynningsområde, Bottenviken

Broman, Evelina January 2015 (has links)
Earlier studies indicate that the interaction between heterotrophic bacteria and dissolved organic matter is rather different in rivers and estuaries. The aim of my thesis was to elucidate if bacteria are regulated differently in the Råne river and estuary during a spring situation. Surface water was collected at both locations and a bioassay performed to study limiting substances for bacterial production, proportion bio-available dissolved organic carbon (DOC) in the water and bacterial growth efficiencies (BGE). The Carbon, Nitrogen and Phosperous concentrations were all higher in the estuary than in the river. The bioassay showed that nitrogen-phosphorus limited the bacterial production at both locations, while DOC occurred in excess. The bio-available part of the DOC pool was larger in the estuary (~6%) than in the river (~3%). However, the BGE was much higher in the river (~40%) than in the estuary (~5%), indicating that a larger proportion of the consumed DOC was used for respiration in the estuary. I conclude that heterotrophic bacteria are limited by the same substance, but that the bacterial metabolism is quite differently regulated in the river and in the estuary.
6

Nitrification in premise plumbing and its effect on corrosion and water quality degradation

Zhang, Yan 28 May 2009 (has links)
Nitrification is increasingly of concern in US potable water systems, due to changes from chlorine to chloramine as a secondary disinfectant in order to comply with new regulations for disinfectant by-products. The ammonia that is released from the chloramine decay supports nitrification. A comprehensive literature review systematically examined the complex inter-relationships between nitrification, materials corrosion and metals release. That analysis suggested that nitrification could accelerate decay of chloramine, enhance corrosion of water distribution system materials, and increase leaching of lead and copper to potable water under at least some circumstances. Moreover, that certain plumbing materials would inhibit nitrification, but that in other situations the plumbing materials would enhance nitrification. Experiments verified that nitrification could affect the relative efficacy of chlorine versus chloramine in controlling heterotrophic bacteria in premise plumbing. Without nitrification, chloramine was always more persistent and effective than chlorine in controlling biofilms. But with nitrification and in pipe materials that are relatively non-reactive with chlorine, chloramine was much less persistent and less effective than chlorine. In materials that are reactive with chlorine such as iron pipes, the relative efficacy of chloramine versus chlorine depends on the relative rate of corrosion and rate of nitrification. High rates of corrosion and low rates of nitrification favor the use of chloramine versus free chlorine in controlling bacteria. Plumbing materials had profound impacts on the incidence of nitrification in homes. Effects were due to toxicity (i.e., release of Cu⁺²), recycling of nitrate back to ammonia substrate by reaction (zero-valent iron, lead or zinc materials), or release of nutrients that are essential to nitrification by leaching from concrete or other materials. As a general rule it was determined that concrete and iron materials encouraged growth of nitrifiers in certain oligotrophic waters, materials such as lead, PVC/plastic pipe, glass and surfaces of other materials were readily colonized by nitrifiers, and materials such as copper and brass were very toxic and relatively resistant to nitrifier colonization. Dependent on circumstance, nitrification had no effect, increased or decreased aspects of materials corrosion. Nitrification markedly increased lead contamination of low alkalinity potable water by reducing the pH. In some cases nitrification dramatically decreased leaching of zinc to potable water from galvanized iron, because of lowered dissolved oxygen and reduced pH. Nitrification did not affect copper solubility in low alkalinity water, but is expected to increase copper solubility in higher alkalinity waters. Finally, nitrification in homes plumbed with PVC or plastics can drop the pH and increase leaching of lead from downstream brass materials in faucets. This can explain why some modern homes plumbed with PVC can have more lead in water when compared to homes plumbed with copper pipe. Phosphate had profound impacts on the incidence of nitrification and resulting effects on water quality. While phosphate levels below about 5 ppb could strongly inhibit nitrification due to a nutrient limitation, nitrifiers can obtain sufficient phosphate from plastic, concrete, copper and iron pipe materials to meet nutritional needs. High levels of phosphate inhibitor can reduce the concentration of Cu⁺² ions and make nitrification more likely, but phosphate can also sometimes lower the corrosion rate and increase the stability of disinfectant and its efficacy in controlling nitrifiers. Phosphate plays a key role in determining where, when and if problems with nitrification will occur in a given water distribution system. This work provides some new fundamental and practical insights to nitrification issues through a comprehensive literature review, lab experiments, solubility modeling and field studies. The results and practical tools developed can be used by utilities and consumers to predict nitrification events and resulting water quality problems, and to make rational decisions about practices such as inhibitor dosing, plumbing material selection and use of whole house filters. / Ph. D.
7

Seasonal Nutrient Limitations of Cyanobacteria, Phytoplankton, and Cyanotoxins in Utah Lake

Lawson, Gabriella Marie 22 July 2021 (has links)
Excess nutrients from human activity trigger toxic cyanobacterial and algal blooms, creating expansive hypoxic dead zones in lakes, damaging ecosystems, hurting local economies, undermining food and water security, and directly harming human health. To identify when and where nutrients limit phytoplankton and cyanobacterial growth, and cyanotoxin concentrations across Utah Lake, USA we conducted four in-situ bioassay studies (563 cubitainers or experimental units) that experimentally added N, P or N+P over the spring, early summer, summer, late summer, and fall in lake water from the top 20 cm of the water column. For our purpose, we defined total phytoplankton as all prokaryotic or eukaryotic organisms containing chlorophyll-a. We evaluated changes in chlorophyll-a and phycocyanin concentrations; the abundance of cyanobacterial species and total phytoplankton species or divisions; cyanotoxin concentrations of the microcystin, anatoxin-a, and cylindrospermopsin; DIN, SRP, TP, and TN concentrations; and other water chemistry parameters. We found that the nutrient limitation of cyanobacteria, and to a lesser extent phytoplankton, was influenced by season and space. Cyanobacteria were often co-limited in the spring or early summer, limited by a single nutrient in the summer, and not limited by N or P in the late summer and fall. Alternatively, phytoplankton were co-limited from the summer into the fall in the main body of the lake and either N limited or co-limited continually in Provo Bay. Microcystis, Aphanocapsa, Dolichospermum, Merismopedia, and Aphanizomenon spp., and Aulacoseira and Desmodesmus spp. and two taxonomical categories of algae (i.e., unicellular and colonial green algae) were primarily associated with cyanobacteria and phytoplankton nutrient limitations. Concentrations of the three cyanotoxins demonstrated a seasonal signal and loosely followed the growth of specific cyanobacteria but was not dependent on total cyanobacterial cell density. The DIN and SRP were biologically available in all water and nutrient treatments with nutrient concentrations declining over the incubation period, suggesting that nutrient levels were not oversaturated. Our results offer insights into specific nutrient targets, species, and, and cyanotoxins to consider in the future to manage Utah Lake.
8

What's Inside? An Examination of the Characteristic Microbiome of Prairie Grasshoppers and Katydids

Muratore, Melani K. 22 June 2020 (has links)
No description available.
9

An Examination of the Cellular Partitioning of Phosphorus in Freshwater Phytoplankton

Duckworth, Robyn M. 31 December 2009 (has links)
No description available.
10

Phenotypic evolution and adaptive strategies in marine phytoplankton (Coccolithophores)

Šupraha, Luka January 2016 (has links)
Coccolithophores are biogeochemically important marine algae that interact with the carbon cycle through photosynthesis (CO2 sink), calcification (CO2 source) and burial of carbon into oceanic sediments. The group is considered susceptible to the ongoing climate perturbations, in particular to ocean acidification, temperature increase and nutrient limitation. The aim of this thesis was to investigate the adaptation of coccolithophores to environmental change, with the focus on temperature stress and nutrient limitation. The research was conducted in frame of three approaches: experiments testing the physiological response of coccolithophore species Helicosphaera carteri and Coccolithus pelagicus to phosphorus limitation, field studies on coccolithophore life-cycles with a method comparison and an investigation of the phenotypic evolution of the coccolithophore genus Helicosphaera over the past 15 Ma. Experimental results show that the physiology and morphology of large coccolithophores are sensitive to phosphorus limitation, and that the adaptation to low-nutrient conditions can lead to a decrease in calcification rates. Field studies have contributed to our understanding of coccolithophore life cycles, revealing complex ecological patterns within the Mediterranean community which are seemingly regulated by seasonal, temperature-driven environment changes. In addition, the high-throughput sequencing (HTS) molecular method was shown to provide overall good representation of coccolithophore community composition. Finally, the study on Helicosphaera evolution showed that adaptation to decreasing CO2 in higher latitudes involved cell and coccolith size decrease, whereas the adaptation in tropical ecosystems also included a physiological decrease in calcification rates in response to nutrient limitation. This thesis advanced our understanding of coccolithophore adaptive strategies and will improve our predictions on the fate of the group under ongoing climate change.

Page generated in 0.1576 seconds