• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Additive Bivariate Hierarchical Model for Functional Data and Related Computations

Redd, Andrew Middleton 2010 August 1900 (has links)
The work presented in this dissertation centers on the theme of regression and computation methodology. Functional data is an important class of longitudinal data, and principal component analysis is an important approach to regression with this type of data. Here we present an additive hierarchical bivariate functional data model employing principal components to identify random e ects. This additive model extends the univariate functional principal component model. These models are implemented in the pfda package for R. To t the curves from this class of models orthogonalized spline basis are used to reduce the dimensionality of the t, but retain exibility. Methods for handing spline basis functions in a purely analytical manner, including the orthogonalizing process and computing of penalty matrices used to t the principal component models are presented. The methods are implemented in the R package orthogonalsplinebasis. The projects discussed involve complicated coding for the implementations in R. To facilitate this I created the NppToR utility to add R functionality to the popular windows code editor Notepad . A brief overview of the use of the utility is also included.

Page generated in 0.0484 seconds