1 |
Structure-based Design, Synthesis and Applications of a New Class of Peptidomimetics: <em>'Y</em>-AA Peptides and Their DerivativesSu, Ma 09 November 2018 (has links)
Peptidomimetics can mimic hierarchical structures of peptides and proteins. Thus, they are extensively studied for therapeutic applications. To break the limitation of backbones and frameworks and expand the peptidomimetics family, a new class of peptidomimetics - “γ-AApeptides” was developed. Design of γ-AApeptides is based on the chiral peptide nucleic acids (PNAs) backbone.
The World Health Organization estimates that one -third of all deaths in the world are on account of infectious diseases. AMPs are important because of their high activity against broad spectrum microbes, less susceptible to grow resistance and selectivity in binding to bacterial cells over human cells. γ-AApeptides as a new class of peptidomimetics have increased stability and enhanced chemical diversity. We have developed polymyxin mimic cyclic peptides, small linear molecules and hydantoin derivatives as potent antibiotic agents with γ-AApeptides. They have good bioactivity and selectivity.
Combinatorial library is key technology for accelerating the discovery of novel therapeutic agents. One-bead-two-compound γ-AApeptides-based library was developed and screened against SMYD2 protein which is essential for tumor growing.
|
2 |
Development of Bioactive PeptidomimeticsShe, Fengyu 01 October 2018 (has links)
Peptidomimetics are synthetic foldamers that expected more resistant to proteolytic degradation and enormous chemodiversity when compared with peptides. To date, the functional peptidomimetics such as β-peptides, peptoids, oligoureas, etc have been developed in many science fields. In order to explore the unnatural foldameric architectures, it’s necessary to discover the novel frameworks and molecular scaffolds. γ-AApeptides were reported to be a new class of peptidomimetics that showed its potential applications in drug discovery and chemical biology. However, a wide function and property of γ-AApeptides need to be further explored. To expand the potential application of γ-AApeptides in biochemistry, I have been focusing on the development of bioactive peptidomimetics, such as exploring the antibacterial activity of helical 1:1 α-sulfono-γ-AA heterogeneous peptides, developing the helical peptidomimetic as the inhibitor of the protein Ras_Raf interaction, identifying the protein/peptide ligands by the novel one-bead-two compound macrocyclic γ-AApeptide screening library, and elucidating the de novo dragon-boat-shaped synthetic foldamers.
|
Page generated in 0.0478 seconds