51 |
Numerical simulations of passive tracers dispersion in the seaFabbroni, Nicoletta <1979> 19 June 2009 (has links)
No description available.
|
52 |
A New Representation of Large River Catchment Basins in the Simulation of the Global ClimateMateria, Stefano <1979> 09 June 2009 (has links)
No description available.
|
53 |
Modelling coupled physical-biogeochemical processes in ice-covered oceansTedesco, Letizia <1978> 19 June 2009 (has links)
The last decades have seen a large effort of the scientific community to study and understand the physics of sea ice. We currently have a wide - even though still not exhaustive - knowledge of the sea ice dynamics and thermodynamics and of their temporal and spatial variability. Sea ice biogeochemistry is instead largely unknown. Sea ice algae production may account for up to 25% of overall primary production in ice-covered waters of the Southern Ocean. However, the influence of physical factors, such as the location of ice formation, the role of snow cover and light
availability on sea ice primary production is poorly understood. There are only sparse localized observations and little knowledge of the functioning of sea ice biogeochemistry at larger scales.
Modelling becomes then an auxiliary tool to help qualifying and quantifying the role of sea ice biogeochemistry in the ocean dynamics. In this thesis, a novel approach is used for the modelling and coupling of sea ice biogeochemistry - and in particular its primary production - to sea ice physics. Previous attempts were based on the coupling of rather complex sea ice physical models to empirical or relatively simple biological or biogeochemical models. The focus is moved here to a more biologically-oriented point of view. A simple, however comprehensive, physical model of the sea ice thermodynamics (ESIM) was developed and coupled to a novel sea ice implementation (BFM-SI) of the Biogeochemical Flux Model (BFM). The BFM is a comprehensive model, largely used and validated in the open ocean environment and in regional seas. The physical model has been developed having in mind the biogeochemical properties of sea ice and the physical inputs required to model sea ice biogeochemistry. The central concept of the coupling is the modelling of the Biologically-Active-Layer (BAL), which is the time-varying fraction of sea ice that is continuously connected to the ocean via brines pockets and channels and it acts as rich habitat for many microorganisms. The physical model provides the key physical properties of the BAL (e.g., brines volume, temperature and salinity), and the BFM-SI simulates the physiological and ecological response of the biological community to the physical enviroment. The new biogeochemical model is also coupled to the pelagic BFM through the exchange of organic and inorganic matter at the boundaries between the two systems . This is done by computing the entrapment of matter and gases when sea ice grows and release to the ocean when sea ice melts to ensure mass conservation. The model was tested in different ice-covered regions of the world ocean to test the generality of the parameterizations. The focus was particularly on the regions of landfast ice, where primary production is generally large. The implementation of the BFM in sea ice and the coupling structure in General Circulation Models will add a new component to the latters (and in general to Earth System Models), which will be able to provide adequate estimate of the role and importance of sea ice biogeochemistry in the global carbon cycle.
|
54 |
Bio-physical interactions and feedbacks in a global climate modelPatara, Lavinia <1979> 11 May 2010 (has links)
This PhD thesis addresses the topic of large-scale interactions between climate and marine biogeochemistry. To this end, centennial simulations are performed under present and projected future climate conditions with a coupled ocean-atmosphere model containing a complex marine biogeochemistry model. The role of marine biogeochemistry in the climate system is first investigated. Phytoplankton solar radiation absorption in the upper ocean enhances sea surface temperatures and upper ocean stratification. The associated increase in ocean latent heat losses raises atmospheric temperatures and water vapor. Atmospheric circulation is modified at tropical and extratropical latitudes with impacts on precipitation, incoming solar radiation, and ocean circulation which cause upper-ocean heat content to decrease at tropical latitudes and to increase at middle latitudes. Marine biogeochemistry is tightly related to physical climate variability, which may vary in response to internal natural dynamics or to external forcing such as anthropogenic carbon emissions. Wind changes associated with the North Atlantic Oscillation (NAO), the dominant mode of climate variability in the North Atlantic, affect ocean properties by means of momentum, heat, and freshwater fluxes. Changes in upper ocean temperature and mixing impact the spatial structure and seasonality of North Atlantic phytoplankton through light and nutrient limitations. These changes affect the capability of the North Atlantic Ocean of absorbing atmospheric CO2 and of fixing it inside sinking particulate organic matter. Low-frequency NAO phases determine a delayed response of ocean circulation, temperature and salinity, which in turn affects stratification and marine biogeochemistry. In 20th and 21st century simulations natural wind fluctuations in the North Pacific, related to the two dominant modes of atmospheric variability, affect the spatial structure and the magnitude of the phytoplankton spring bloom through changes in upper-ocean temperature and mixing. The impacts of human-induced emissions in the 21st century are generally larger than natural climate fluctuations, with the phytoplankton spring bloom starting one month earlier than in the 20th century and with ~50% lower magnitude. This PhD thesis advances the knowledge of bio-physical interactions within the global climate, highlighting the intrinsic coupling between physical climate and biosphere, and providing a framework on which future studies of Earth System change can be built on.
|
55 |
Sea Surface Temperature variations and air-sea physics parametrizations in the Mediterranean SeaPettenuzzo, Daniele <1977> 27 May 2010 (has links)
No description available.
|
56 |
Development of operational oceanography applications: environmental indicators and decision support systemsCoppini, Giovanni <1974> 11 May 2010 (has links)
No description available.
|
57 |
Towards Rapid Environmental Assessment and Coastal Forecasting in the Northern Adriatic SeaSimoncelli, Simona <1976> 11 May 2010 (has links)
A new Coastal Rapid Environmental Assessment (CREA) strategy has been developed and successfully applied to the Northern Adriatic Sea. CREA strategy exploits the recent advent of operational oceanography to establish a CREA system based on an operational regional forecasting system and coastal monitoring networks of opportunity. The methodology wishes to initialize a coastal high resolution model, nested within the regional forecasting system, blending the large scale parent model fields with the available coastal observations to generate the requisite field estimates.
CREA modeling system consists of a high resolution, O(800m), Adriatic SHELF model (ASHELF) implemented into the Northern Adriatic basin and nested within the Adriatic Forecasting System (AFS) (Oddo et al. 2006). The observational system is composed by the coastal networks established in the framework of ADRICOSM (ADRiatic sea integrated COastal areaS and river basin Managment system) Pilot Project. An assimilation technique exerts a correction of the initial field provided by AFS on the basis of the available observations. The blending of the two data sets has been carried out through a multi-scale optimal interpolation technique developed by Mariano and Brown (1992).
Two CREA weekly exercises have been conducted: the first, at the beginning of May (spring experiment); the second in middle August (summer experiment). The weeks have been chosen looking at the availability of all coastal observations in the initialization day and one week later to validate model results, verifying our predictive skills. ASHELF spin up time has been investigated too, through a dedicated experiment, in order to obtain the maximum forecast accuracy within a minimum time. Energetic evaluations show that for the Northern Adriatic Sea and for the forcing applied, a spin-up period of one week allows ASHELF to generate new circulation features enabled by the increased resolution and its total kinetic energy to establish a new dynamical balance.
CREA results, evaluated by mean of standard statistics between ASHELF and coastal CTDs, show improvement deriving from the initialization technique and a good model performance in the coastal areas of the Northern Adriatic basin, characterized by a shallow and wide continental shelf subject to substantial freshwater influence from rivers. Results demonstrate the feasibility of our CREA strategy to support coastal zone management and wish an additional establishment of operational coastal monitoring activities to advance it.
|
58 |
Development of oil spill detection techniques for satellite optical sensors and their application to monitor oil spill discharge in Mediterranean seaPisano, Andrea <1977> 09 May 2011 (has links)
Satellite remote sensing has proved to be an effective support in timely detection and monitoring of marine oil pollution, mainly due to illegal ship discharges. In this context, we have developed a new methodology and technique for optical oil spill detection, which make use of MODIS L2 and MERIS L1B satellite top of atmosphere (TOA) reflectance imagery, for the first time in a highly automated way. The main idea was combining wide swaths and short revisit times of optical sensors with SAR observations, generally used in oil spill monitoring. This arises from the necessity to overcome the SAR reduced coverage and long revisit time of the monitoring area. This can be done now, given the MODIS and MERIS higher spatial resolution with respect to older sensors (250-300 m vs. 1 km), which consents the identification of smaller spills deriving from illicit discharge at sea. The procedure to obtain identifiable spills in optical reflectance images involves removal of oceanic and atmospheric natural variability, in order to enhance oil-water contrast; image clustering, which purpose is to segment the oil spill eventually presents in the image; finally, the application of a set of criteria for the elimination of those features which look like spills (look-alikes). The final result is a classification of oil spill candidate regions by means of a score based on the above criteria. / Oil Spill Detection, MODIS, MERIS, Destriping, Clustering, Feature extraction; Classification
|
59 |
Climate impact studies of sediment transport on the Adriatic coastal zoneGuarnieri-Minnucci, Antonio <1976> 06 May 2011 (has links)
The study of the impact of climate change on the environment has been based, until very recently, on an global approach, whose interest from a local point of view is very limited. This thesis, on the contrary, has treated the study of the impact of climate change in the Adriatic Sea basin following a twofold strategy of regionalization and integration of numerical models in order to reproduce the present and future scenarios of the system through a more and more realistic and solid approach. In particular the focus of the study was on the impact on the physical environment and on the sediment transport in the basin. This latter is a very new and original issue, to our knowledge still uninvestigated. The study case of the coastal area of Montenegro was particularly studied, since it is characterized by an important supply of sediment through the Buna/Bojana river, second most important in the Adriatic basin in terms of flow.
To do this, a methodology to introduce the tidal processes in a baroclinic primitive equations Ocean General Circulation Model was applied and tidal processes were successfully reproduced in the Adriatic Sea, analyzing also the impacts they have on the mean general circulation, on salt and heat transport and on mixing and stratification of the water column in the different seasons of the year. The new hydrodynamical model has been further coupled with a wave model and with a river and sea sediment transport model, showing good results in the reproduction of sediment transport processes. Finally this complex coupled platform was integrated in the period 2001-2030 under the A1B scenario of IPCC, and the impact of climate change on the physical system and on sediment transport was preliminarily evaluated.
|
60 |
Sea-Level climate variability in the Mediterranean SeaBonaduce, Antonio <1980> 14 May 2012 (has links)
Sea-level variability is characterized by multiple interacting factors described in the Fourth Assessment Report (Bindoff et al., 2007) of the Intergovernmental Panel on Climate Change (IPCC) that act over wide spectra of temporal and spatial scales. In Church et al. (2010) sea-level variability and changes are defined as manifestations of climate variability and change. The European Environmental Agency (EEA) defines sea level as one of most important indicators for monitoring climate change, as it integrates the response of different components of the Earths system and is also affected by anthropogenic contributions (EEA, 2011).
The balance between the different sea-level contributions represents an important source of uncertainty, involving stochastic processes that are very difficult to describe and understand in detail, to the point that they are defined as an enigma in Munk (2002). Sea-level rate estimates are affected by all these uncertainties, in particular if we look at possible responses to sea-level contributions to future climate.
At the regional scale, lateral fluxes also contribute to sea-level variability, adding complexity to sea-level dynamics.
The research strategy adopted in this work to approach such an interesting
and challenging topic has been to develop an objective methodology to study sea-level variability at different temporal and spatial scales, applicable in each part of the Mediterranean basin in particular, and in the global ocean in general, using all the best calibrated sources of data (for the Mediterranean): in-situ, remote-sensig and numerical models data. The global objective of this work was to achieve a deep understanding of all of the components of the sea-level signal contributing to sea-level variability,
tendency and trend and to quantify them.
|
Page generated in 0.0327 seconds