• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementace OLAP analýzy nad daty knihoven VUT / Implementation of OLAP Analysis for BUT Libraries

Mahdalíček, Josef January 2008 (has links)
The aim of this project is to create tool for OLAP analysis over operational data of BUT libraries. This OLAP tool answers ie. query how long were users having loaned books. These queries could be specified by time period (year, month), library (ie. FIT library) and other dimensions. Only some, for this application interesting, tables from source database are used. Tables were exported into text files in csv format. According to project specification, system for OLAP analysis should be open source. Tool Mondrian accomplishes this requirement and was  used in this work. Data warehouse is represented by relational database MySQL. ETL tool feeds data warehouse by data from exported files. User interface is used from internet browser and is implemented by component JPivot. Query results are displayed in tables and graphs.
2

Χρήση της OLAP τεχνικής στην οπτικοποίηση κανόνων Data mining / Visualization of Data mining rules using OLAP

Γκίζα, Ειρήνη 27 August 2008 (has links)
Η διαδικασία εξόρυξης από δεδομένα [Data Mining] αποτελεί μια συνεχώς αναπτυσσόμενη διαδικασία ανακάλυψης γνώσης μέσω της εξαγωγής μέχρι πρότινος άγνωστης πληροφορίας από μεγάλες εμπορικές και επιστημονικές βάσεις δεδομένων. Η διαδικασία εξόρυξης από δεδομένα εξάγει κανόνες δια μέσου της επεξεργασίας κατηγορικών ή αριθμητικών δεδομένων, από βάσεις πολλών διαστάσεων (> από 4 χαρακτηριστικά). Η ταξινόμηση, η ομαδοποίηση και η συσχέτιση αποτελούν τις πιο γνωστές και πλέον χρησιμοποιούμενες τεχνικές Data Mining. Ωστόσο συνήθως και οι κανόνες που εξάγονται από τα δεδομένα μπορεί να είναι πολλοί και δυσνόητοι στον τελικό χρήστη/ αναλυτή ο οποίος ενδέχεται να μην είναι εξοικειωμένος με τις τεχνικές της Μηχανικής Μάθησης. Προκειμένου να επιλυθεί αυτό το πρόβλημα τα τελευταία έτη έχουν αναπτυχθεί διάφορες τεχνικές οπτικοποίησης (Visualization) τόσο των δεδομένων που χρησιμοποιούνται κατά τη διαδικασία Data Mining (ανεπεξέργαστα δεδομένα) όσο και των κανόνων που εξάγονται από την εφαρμογή της. Όλες οι τεχνικές οπτικοποίησης προσπαθούν να εκμεταλλευτούν την αντιληπτική ικανότητα του χρήστη στην κατανόηση των εξαγόμενων προτύπων. Επιπρόσθετα ο χρήστης τείνει να εμπιστεύεται περισσότερο ένα αποτέλεσμα όταν το κατανοεί πλήρως. Ο σκοπός των τεχνικών οπτικοποίησης συνίσταται ακριβώς σε αυτό. Στη διεθνή βιβλιογραφία έχουν παρουσιαστεί αρκετές μέθοδοι οπτικής παρουσίασης των δεδομένων ενώ τα τελευταία χρόνια η επιστημονική κοινότητα έχει εστιάσει το ενδιαφέρον της και στην οπτικοποίηση των αποτελεσμάτων του Data Mining. Στόχος της παρούσας διπλωματικής εργασίας είναι πέρα από την παράθεση των τεχνικών οπτικής παρουσίασης των εξαγόμενων κανόνων των διαδικασιών συσχέτισης [association], ταξινόμησης [classification] και [clustering] που έχουν παρουσιαστεί από την επιστημονική κοινότητα την τελευταία εικοσαετία, η παρουσίαση μιας νέας τεχνικής οπτικοποίησης των κανόνων data mining με χρήση της τεχνολογίας On Line Analytical Processing [OLAP]. Σε πιο ειδικό πλαίσιο, η προτεινόμενη τεχνική χρησιμοποιεί το δυσδιάστατο πίνακα που χρησιμοποιούν τα περισσότερα OLAP μοντέλα και την έννοια της ιεραρχίας προκειμένου να οπτικοποιήσει ένα σημαντικό αριθμό κανόνων data mining και από τις τρεις (3) προαναφερόμενες τεχνικές. Επίσης, παρουσιάζονται τα πειραματικά αποτελέσματα της οπτικοποίησης που δείχνουν πώς η προτεινόμενη τεχνική είναι χρήσιμη στην ανάλυση και στην κατανόηση των εξαγόμενων κανόνων. / Data Mining is an emerging knowledge discovery process of extracting previously unknown, actionable information from very large scientific and commercial databases. Usually, a data mining process extracts rules by processing high dimensional categorical and/or numerical data (> 4 attributes). Classification, Clustering and Association constitute for the most well known Data Mining tasks. However, in the data mining context often the user has to analyze hundreds of extracted rules in order to grasp valuable knowledge. Thus, the analysis of such rules by means of visual tools has evolved rapidly in recent years. Visual data mining attempts to take advantage of humans’ ability to perceive pattern and structure in visual form. The end user trusts more a result if he understand it completely. And this is the purpose of visual techniques. There have been proposed many techniques for visualizing the data in literature, whereas the last years many researchers have focused on the visualization of data mining results (knowledge visualization). Researchers have developed many tools to visualize data mining rules. However, few of these tools can handle effectively more than some dozens of data mining rules. In this thesis, we propose a new visualization technique of data mining rules based On Line Analytical Processing [OLAP]. More specifically, the proposed technique utilizes the standard two dimensional cross-tabulation table of most OLAP models in order to visualize even a great number of data mining rules from all techniques. We also present experimental results that demonstrate how the proposed technique is useful and helpful for analyzing and understanding extracted data mining rules.
3

Návrh interaktivního WWW OLAP rozhraní pro analýzu produkce výrobních závodů / Design of Interactive WWW OLAP Interface

Mazáč, Pavel January 2008 (has links)
This work is focused on OLAP analysis. The work presents important theoretic facts and compares availible OLAP systems in different ways. The main goal was to create own OLAP system. Design and implementation of this system is described in the project.
4

Řízení informačních toků malé softwarové společnosti / Management of Information Flow of Small Software Company

Klimeš, Jiří January 2012 (has links)
This diploma thesis deals with the management of information flow of a small company using Business Intelligence tools and the data mart. There is defined the problem of working with information from the point of view of selected company in the first part. The next part presents selected theoretical background on the basis of which was the aim achieved. The fourth part analyses the current situation of the company. There is recommended complex improvement of the current situation in the practical part. Selected information management problem is accomplished factually. There are also introduced suitable software tools, which were used for the solution.
5

OLAP Recommender: Supporting Navigation in Data Cubes Using Association Rule Mining / OLAP Recommender

Koukal, Bohuslav January 2017 (has links)
Manual data exploration in data cubes and searching for potentially interesting and useful information starts to be time-consuming and ineffective from certain volume of the data. In my thesis, I designed, implemented and tested a system, automating the data cube exploration and offering potentially interesting views on OLAP data to the end user. The system is based on integration of two data analytics methods - OLAP analysis data visualisation and data mining, represented by GUHA association rules mining. Another contribution of my work is a research of possibilities how to solve differences between OLAP analysis and association rule mining. Implemented solutions of the differences include data discretization, dimensions commensurability, design of automatic data mining task algorithm based on the data structure and mapping definition between mined association rules and corresponding OLAP visualisation. The system was tested with real retail sales data and with EU structural funds data. The experiments proved that complementary usage of the association rule mining together with OLAP analysis identifies relationships in the data with higher success rate than the isolated use of both techniques.

Page generated in 0.0484 seconds