1 |
Counting Convex Sets on Products of Totally Ordered SetsBarnette, Brandy Amanda 01 May 2015 (has links)
The main purpose of this thesis is to find the number of convex sets on a product of two totally ordered spaces. We will give formulas to find this number for specific cases and describe a process to obtain this number for all such spaces. In the first chapter we briefly discuss the motivation behind the work presented in this thesis. Also, the definitions and notation used throughout the paper are introduced here The second chapter starts with examining the product spaces of the form {1; 2; : : : ;n} × {1; 2}. That is, we begin by analyzing a two-row by n-column space for n > N. Three separate approaches are discussed, and verified, to find the total number of convex sets on the space. A general formula is presented to obtain this total for all n. In the third chapter we take the same {1; 2; : : : ;n} × {1; 2} spaces from Chapter 2 and consider all the scenarios for adding a second disjoint convex set to the space. Adding a second convex set gives a collection of two mutually disjoint sets. Again, a general formula is presented to obtain this total number of such collections for all n. The fourth chapter takes the idea from Chapter 2 and expands it to product spaces {1; 2; : : : ;n} × {1; 2; : : : ;m} consisting of more than two rows. Here the creation of convex sets having z rows from those having z − 1 rows is exploited to obtain a model that will give the total number of z-row convex sets on any n × m space, provided the set occupies z adjacent rows. Finally, the fifth chapter describes all possible scenarios for convex sets to be placed in the {1; 2; : : : ;n}×{1; 2; : : : ;m} space. This chapter then explains the process needed to acquire a count of all convex sets on any such space as well. Chapter 5 ends by walking through this process with a concrete example, breaking it down into each scenario. We conclude by briefly summarizing the results and specifying future work we would like to further investigate, in Chapter 6.
|
2 |
Functorial quasi-uniformities over partially ordered spacesSchauerte, Anneliese January 1988 (has links)
Bibliography: pages 90-94. / Ordered spaces were introduced by Leopoldo Nachbin [1948 a, b, c, 1950, 1965]. We will be primarily concerned with completely regular ordered spaces, because they are precisely those ordered spaces which admit quasi-uniform structures. A recent and convenient study of these spaces is in the book by P. Fletcher and W.F. Lindgren [1982]. In this thesis we consider functorial quasi-uniformities over (partially) ordered spaces. The functorial methods which we use were developed by Brummer [1971, 1977, 1979, 1982] and Brummer and Hager [1984, 1987] in the context of functorial uniformities over completely regular topological spaces, and of functorial quasi-uniformities over pairwise. completely regular bitopological spaces. We obtain results which are to a large extent analogous to results in those papers. We also introduce some functors which relate our functorial quasi-uniformities to the structures studied by Brummer and others (e.g. Salbany [1984]).
|
3 |
Ordered spaces of continuous functions and bitopological spacesNailana, Koena Rufus 11 1900 (has links)
This thesis is divided into two parts: Ordered spaces of Continuous Functions and
the algebras associated with the topology of pointwise convergence of the associated
construct, and Strictly completely regular bitopological spaces.
The Motivation for part of the first part (Chapters 2, 3 and 4) comes from the
recent study of function spaces for bitopological spaces in [44] and [45]. In these
papers we see a clear generalisation of classical results in function spaces ( [14] and
[55]) to bi-topological spaces. The well known definitions of the pointwise topology and
the compact open topology in function spaces are generalized to bitopological spaces,
and then familiar results such as Arens' theorem are generalised. We will use the same
approach in chapters 2, 3 and 4 to formulate analogous definitions in the setting of
ordered spaces. Well known results, including Arens' theorem, are also generalised
to ordered spaces. In these chapters we will also compare function spaces in the
category of topological spaces and continuous functions, the category of bi topological
spaces and bicontinuous functions, and the category of ordered topological spaces and
continuous order-preserving functions. This work has resulted in the publication of
[30] and [31].
Continuing our study of Function Spaces, we oonsider in Chapters 5 and 6 some
Categorical aspects of the construction, motivated by a series of papers which includes
[39], [40], [41] and [50]. In these papers the Eilenberg-Moore Category of algebras of
the monad induced by the Hom-functor on the categories of sets and categories of
topological spaces are classified. Instead of looking at the whole product topology we
will restrict ourselves to the pointwise topology and give examples of the EilenbergMoore Algebras arising from this restriction. We first start by way of motivation, with
the discussion of the monad when the range space is the real line with the usual topology.
We then restrict our range space to the two point Sierpinski space, with the aim
of discovering a topological analogue of the well known characterization of Frames as
the Eilenberg-Moore Category of algebras associated with the Hom-F\mctor of maps
into the Sierpinski space [11]. In this case the order structure features prominently, resulting in the category Frames with a special property called "balanced" and Frame
homomorphisms as the Eilenberg-Moore category of M-algebras. This has resulted
in [34].
The Motivation for the second part comes from [20] and [15]. In [20], J. D. Lawson
introduced the notion of strict complete regularity in ordered spaces. A detailed study
of this notion was done by H-P. A. Kiinzi in [15]. We shall introduce an analogous
notion for bitopological spaces, and then shall also compare the two notions in the categories
of bi topological spaces and bicontinuous functions, and of ordered topological
spaces and continuous order-preserving functions via the natural functors considered
in the previous chapters. We further study the Stone-Cech bicompactification and
Stone-Cech ordered compactification in the two categories. This has resulted in [32] and [33] / Mathematical Sciences / D. Phil. (Mathematics)
|
Page generated in 0.0219 seconds