• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribution à l'élicitation des paramètres en optimisation multicritère / Contribution to the parameter elicitation in multicriteria optimization

Aribi, Noureddine 25 June 2014 (has links)
De nombreuses méthodes existent pour résoudre des problèmes d'optimisation multicritère, et il n'est pas aisé de choisir une méthode suffisamment adaptée à un problème multicritère donné. En effet, après le choix d'une méthode multicritère, différents paramètres (e.g. poids, fonctions d'utilité, etc.) doivent être déterminés, soit pour trouver la solution optimale (meilleur compromis) ou pour classer l'ensemble des solutions faisables (alternatives). Justement, vue cette difficulté pour fixer les paramètres, les méthodes d'élicitation sont utilisées pour aider le décideur dans cette tâche de fixation des paramètres. Par ailleurs, nous supposons que nous disposons d'un ensemble de solutions plausibles, et nous faisons aussi l'hypothèse de la disponibilité au préalable, des informations préférentielles obtenues après une interaction avec le décideur. Dans la première contribution de ce travail, nous tirons profit d'une mesure statistique simple et rapidement calculable, à savoir, le coefficient de corrélation $rho$ de Spearman, afin de développer une approche gloutonne (approchée), et deux approches exactes basées sur la programmation par contraintes (PPC) et la programmation linéaire en nombres entiers (PLNE). Ces méthodes sont ensuite utilisées pour éliciter automatiquement les paramètres appropriés de la méthode multicritère basée sur l'ordre lexicographique. Nous proposons aussi des modèles d'élicitation des paramètres d'autres méthodes multicritère, telles que la méthode MinLeximax issue de la théorie du choix social et du partage équitable, la méthode de la somme pondérée et les opérateurs OWA. / Many methods exist for solving multicriteria optimization problems, and it is not easy to choose the right method well adapted to a given multicriteria problem. Even after choosing a multicriteria method, various parameters (e.g. weight, utility functions, etc.) must be carefully determined either to find the optimal solution (best compromise) or to classify all feasible solutions (the set of alternatives). To overcome this potential difficulty, elicitation methods are used in order to help the decision maker to fix safely the parameters. Additionally, we assume that we have a set of feasible solutions, and we also make the assumption that we have prior information about the preferences of the decision maker, and we focus on how to use this information, rather than how to get them. In the first contribution of this work, we take advantage of a simple and quickly computable statistical measure, namely, the Spearman $rho$ correlation coefficient, to develop an gready approche, and two exact approaches based on constraint programming (CP) and linear integer programming (MIP). These methods are then used to automatically elicit the appropriate parameter of the lexicographic ordering method. We also propose some elicitation models for most commonly used multicriteria methods, such as MinLeximax method used to ensure fairness and efficiency requirements, the weighted sum method, and OWA operators. These elicitation models are based either on solving mixed integer linear programming, or constraints networks with an objective function.
2

Takagi-Sugeno and Mamdani Fuzzy Control of a Resort Management System

Tan, Lujiao January 2012 (has links)
By means of fuzzy set theory as well as Takagi-Sugeno and Mamdani fuzzy controller, this paper presents the investigation of a Resort Management System implemented by a combination of a T-S model and a Mamdani model. It demonstrates the procedure of the specific premise parameters identification and consequence parameters identification performed by regression knowledge in the T-S model, and the process of the fuzzification, the rule base creation and the defuzzification with COG technique in the Mamdani model. Therefore, an aggregation between T-S controller and Mamdani controller applied in the field of management by a novel angle is illustrated, which, as a result, devotes an improved management system that shares great convenience in the control process when combined with mathematics. Moreover, a modification of the conventional Takagi-Sugeno and Mamdani controller is demonstrated in conjunction with fuzzy operations t-norms and OWA by adjusting the -value, which is used in the calculation of final outputs in the T-S model and the computation of rule consequences in the Mamdani model. The algebraic intersection, bounded intersection as well as the -parameter t-norm are the t-norms which are going to be introduced. Besides, we have tested that t-norms generate the same alpha values when the membership degrees meet the boundary with the value of 1 or 0 while OWA can still yield a well-balanced result different from the one computing by minimum operation. Nevertheless both t-norms and OWA are able to shift the alpha-value in a well-adjusted way when the membership degrees lie in the interval [0,1]. A tendency has been shown that alpha-value tends to decrease by means of t-norms and OWA operations and consequently, the final outputs appear to be reduced.
3

Contribution à l'élicitation des paramètres en optimisation multicritère

Aribi, Noureddine 25 June 2014 (has links) (PDF)
De nombreuses méthodes existent pour résoudre des problèmes d'optimisation multicritère, et il n'est pas aisé de choisir une méthode suffisamment adaptée à un problème multicritère donné. En effet, après le choix d'une méthode multicritère, différents paramètres (e.g. poids, fonctions d'utilité, etc.) doivent être déterminés, soit pour trouver la solution optimale (meilleur compromis) ou pour classer l'ensemble des solutions faisables (alternatives). Justement, vue cette difficulté pour fixer les paramètres, les méthodes d'élicitation sont utilisées pour aider le décideur dans cette tâche de fixation des paramètres. Par ailleurs, nous supposons que nous disposons d'un ensemble de solutions plausibles, et nous faisons aussi l'hypothèse de la disponibilité au préalable, des informations préférentielles obtenues après une interaction avec le décideur. Dans la première contribution de ce travail, nous tirons profit d'une mesure statistique simple et rapidement calculable, à savoir, le coefficient de corrélation $rho$ de Spearman, afin de développer une approche gloutonne (approchée), et deux approches exactes basées sur la programmation par contraintes (PPC) et la programmation linéaire en nombres entiers (PLNE). Ces méthodes sont ensuite utilisées pour éliciter automatiquement les paramètres appropriés de la méthode multicritère basée sur l'ordre lexicographique. Nous proposons aussi des modèles d'élicitation des paramètres d'autres méthodes multicritère, telles que la méthode MinLeximax issue de la théorie du choix social et du partage équitable, la méthode de la somme pondérée et les opérateurs OWA.
4

Développement d'une approche floue multicritère d'aide à la coordination des décideurs pour la résolution des problèmes de sélection dans les chaines logistiques / Multi-criteria group decision making approach for the selection problem

Igoulalene, Idris 02 December 2014 (has links)
Dans le cadre de cette thèse, notre objectif est de développer une approche multicritère d'aide à la coordination des décideurs pour la résolution des problèmes de sélection dans les chaines logistiques. En effet, nous considérons le cas où nous avons k décideurs/experts notés ST1,...,STk qui cherchent à classer un ensemble de m alternatives/choix notées A1,...,Am évaluées en termes de n critères conflictuels notés C1,..., Cn. L'ensemble des données manipulées est flou. Chaque décideur est amené à exprimer ses préférences pour chaque alternative par rapport à chaque critère à travers une matrice dite matrice des préférences. Notre approche comprend principalement deux phases, respectivement une phase de consensus qui consiste à trouver un accord global entre les décideurs et une phase de classement qui traite le problème de classement des différentes alternatives.Comme résultats, pour la première phase, nous avons adapté deux mécanismes de consensus, le premier est basé sur l'opérateur mathématique neat OWA et le second sur la mesure de possibilité. De même, nous avons développé un nouveau mécanisme de consensus basé sur la programmation par but goal programming. Pour la phase de classement, nous avons adapté dans un premier temps la méthode TOPSIS et dans un second, le modèle du goal programming avec des fonctions de satisfaction. Pour illustrer l'applicabilité de notre approche, nous avons utilisé différents problèmes de sélection dans les chaines logistiques comme la sélection des systèmes de formation, la sélection des fournisseurs, la sélection des robots et la sélection des entrepôts. / This thesis presents a development of a multi-criteria group decision making approach to solve the selection problems in supply chains. Indeed, we start in the context where a group of k decision makers/experts, is in charge of the evaluation and the ranking of a set of potential m alternatives. The alternatives are evaluated in fuzzy environment while taking into consideration both subjective (qualitative) and objective (quantitative) n conflicting criteria. Each decision maker is brought to express his preferences for each alternative relative to each criterion through a fuzzy matrix called preference matrix. We have developed three new approaches for manufacturing strategy, information system and robot selection problem:1. Fuzzy consensus-based possibility measure and goal programming approach.2. Fuzzy consensus-based neat OWA and goal programming approach.3. Fuzzy consensus-based goal programming and TOPSIS approach.Finally, a comparison of these three approaches is conducted and thus was able to give recommendations to improve the approaches and provide decision aid to the most satisfying decision makers.
5

Meta-heurísticas híbridas aplicadas ao problema da árvore geradora multiobjetivo / Hybrid metaheuristics applied to the multi-objective spanning tree problem

Fernandes, Islame Felipe da Costa 06 July 2018 (has links)
Submitted by Automação e Estatística (sst@bczm.ufrn.br) on 2018-08-01T21:05:14Z No. of bitstreams: 1 IslameFelipeDaCostaFernandes_DISSERT.pdf: 12085812 bytes, checksum: 11b3cc3f73ed5f2051b48e441b6ee204 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2018-08-02T23:01:50Z (GMT) No. of bitstreams: 1 IslameFelipeDaCostaFernandes_DISSERT.pdf: 12085812 bytes, checksum: 11b3cc3f73ed5f2051b48e441b6ee204 (MD5) / Made available in DSpace on 2018-08-02T23:01:50Z (GMT). No. of bitstreams: 1 IslameFelipeDaCostaFernandes_DISSERT.pdf: 12085812 bytes, checksum: 11b3cc3f73ed5f2051b48e441b6ee204 (MD5) Previous issue date: 2018-07-06 / Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq / O Problema da Árvore Geradora Multiobjetivo (AGMO) é uma extensão NP-Difícil da Árvore Geradora Mínima (AGM). Devido à sua habilidade em modelar inúmeros problemas reais onde objetivos conitantes devem ser otimizados simultaneamente, a AGMO tem sido intensamente estudada na literatura e muitos algoritmos exatos e heurísticos lhe foram propostos. Além disso, nos últimos anos, pesquisas têm demonstrado considerável desempenho dos algoritmos que combinam estratégias de várias meta-heurísticas. Estes algoritmos são chamados híbridos e trabalhos anteriores os aplicaram com sucesso a vários problemas de otimização. Neste trabalho, cinco novos algoritmos híbridos são propostos para duas versões da AGMO: três para a versão bi-objetivo (AG-Bi) baseada em dominância de Pareto e dois para a versão com muitos objetivos baseada no operador de média ponderada ordenada (AG-OWA). Esta pesquisa hibridizou diversas abordagens meta-heurísticas com respeito a diferentes categorias de hibridização. Experimentos computacionais avaliaram as novas abordagens com base no tempo computacional e na qualidade das soluções encontradas. Os resultados foram comparados com o estado da arte. / The Multi-objective Spanning Tree Problem (MSTP) is an NP-hard extension of the Minimum Spanning Tree (MST). Once the MTSP models several real-world problems in which conicting objectives need to be optimized simultaneously, it has been extensively studied in the literature and several exact and heuristic algorithms were proposed for it. Besides, over the last years, researchs have showed the considerable performance of algorithms that combine various metaheuristic strategies. They are called hybrid algorithms and previous works successfully applied them to several optimization problems. In this work, five new hybrid algorithms are proposed for two versions of the MSTP: three for the bi-objective version (BiST) based on Pareto dominance and two for the manyobjective version based on the ordered weighted average operator (OWA-ST). This research hybridized elements from various metaheuristics. Computational experiments investigated the potential of the new algorithms concerning computational time and solution quality. The results were compared to the state-of-the-art.

Page generated in 0.0202 seconds