• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 13
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 82
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analysis of a flavin sulfhydryl oxidase isolated from bovine milk

Jaje, Jennifer. January 2008 (has links)
Thesis (M.S.)--University of Delaware, 2007. / Principal faculty advisor: Colin Thorpe, Dept. of Chemistry & Biochemistry. Includes bibliographical references.
12

Production and characterization of antisera against 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase /

Yau, Ka-tun. January 1996 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1997. / Includes bibliographical references (leaves 77-89).
13

Apple polyphenol oxidase activity in relation to various phenolic compounds

Tucker, Christine Wood, January 1966 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1966. / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
14

Human quiescin-sulhydryl oxidase 1b role of CxxC motif cysteines in catalysis /

Heckler, Erin J. January 2009 (has links)
Thesis (Ph.D.)--University of Delaware, 2009. / Principal faculty advisor: Colin Thorpe, Dept. of Chemistry & Biochemistry. Includes bibliographical references.
15

Isolation, purification and characterization of a novel glucose oxidase from Penicillium canescens Tt42 /

Simpson, Clinton. January 2005 (has links)
Thesis (M. Sc. (Biochemistry, Microbiology & Biotechnology))--Rhodes University, 2006.
16

Isolation, purification and characterization of a novel glucose oxidase from Penicillium canescens Tt42

Simpson, Clinton January 2006 (has links)
A novel glucose oxidase from Penicillium canescens (Tt42) was isolated, purified and characterised. The P. canescens Tt42 was cultivated using an optimised growth medium from literature, and maximum glucose oxidase activities of 11.5 U/ml and 6.9 U/ml for the intra- and extracellular fractions were obtained. Maximum glucose oxidase production was achieved after 72 hours at 28°C which coincided with glucose depletion. A total of 1104 U (from 60ml) of glucose oxidase was produced with a biomass specific glucose oxidase activity of 1.08 Umg[superscript -1] Four methods of cell disruption were evaluated for release of intracellular glucose oxidase from P. canescens Tt42 cells. These methods were; sonication, French press, Freeze-Thaw and a high pressure cell disrupter (Z-Plus Series) from Constant systems. All the methods were successful in releasing the intracellular glucose oxidase from P. canescens Tt42. The use of the Constant Systems high pressure cell disrupter was preferred, since it was the simplest and most rapid method. Ammonium sulphate precipitation was shown to be effective as an initial purification step for extracellular glucose oxidase from P. canescens Tt42. Comparison of the intra- and extracellular glucose oxidase fractions using isoelectric focusing showed 2 isoenzymes in both fractions. The pI values of the isoenzymes were determined to be 4.30 and 4.67, with the former being dominant. Since both the intra- and extracellular fractions contained the same isoenzymes of glucose oxidase, further purification studies were performed using the extracellular fraction. The glucose oxidase from P. canescens Tt42 was purified using 3 main techniques: ammonium sulphate precipitation (60% - 70% cut), anion exchange chromatography (Super Q 650M) and size exclusion chromatography (Sephadex S200HR). The glucose oxidase was determined to be ±80% pure by size exclusion chromatography. The final purified glucose oxidase was lyophilised, and an overall purification yield of 10.3% was achieved with an 8.6-fold purification. The purified glucose oxidase was confirmed to be catalase free. Glucose oxidase from P. canescens Tt42 was determined to be a dimeric protein (M[subscript r] ±148kDa) likely consisting of 2 equal subunits (M[subscript r] ± 70kDa). The temperature optimum range was shown to be 25-30°C. The optimum pH for the oxidation of β-D-glucose was pH 7. The enzyme was shown to be stable at 25°C for 10 hours, with a half life of approximately 30 minutes at 37°C. The lyophilised enzyme was stable at -20°C for 6 months. The properties of glucose oxidase from Tt42 were comparable to alternative glucose oxidase enzymes from Aspergillus and other Penicillium species. Glucose oxidase from P. canescens Tt42 was shown to have distinct kinetic characteristics. The V[subscript max] and K[subscript m] were shown to be 651 Umg[superscript -1] and 18.4 mM towards β-D-glucose. The catalytic kcat and specificity k[subscript cat]/K[subscript m] constants for glucose oxidase from P. canescens Tt42 were shown to be 791 s[superscript -1] and 40 s[superscript -1]mM[superscript -1] each respectively. The specificity constant (k[subscript cat]/K[subscript m]) of glucose oxidase from P. canescens Tt42 was determined to be 1.3-fold higher than that that of A. niger (Sigma Type VII) and 8.7-fold lower than that of P. amagasakiense (ATCC 28686) from literature.
17

Biocatalytic and biomimetic studies of polyphenol oxidase

Burton, Stephanie Gail January 1994 (has links)
Mushroom polyphenol oxidase (EC 1.14.18.1) was investigated to determine its potential for application as a biocatalyst in the synthesis of o-quinones, in organic medium. In order to determine the kinetic properties of the biocatalyst, a system was devised which comprised an immobilised polyphenol oxidase extract, functioning in chloroform. The system was hydrated by the addition of buffer. A simple method for the consistent measurement of reaction rates in this heterogenous system was designed and used to obtain detailed enzyme kinetic data relating to optimisation of reaction conditions and substrate specificity. The aqueous content of the system was optimised using p-cresol as a substrate. A crude, immobilised extract of Agaricus bisporus was used to hydroxylate and oxidise a range of selected p-substituted phenolic substrates, yielding, as the sale products, o-quinones. These products were efficiently reduced to catechols by extracting the reaction mixtures with aqueous ascorbic acid solution. The biocatalytic system was also successfully utilised to produce L-DOPA, the drug used to treat Parkinson's disease, from L-acetyl tyrosine ethyl ester (ATEE). Michaelis-Menten kinetics were used to obtain apparent Km and V values with respect to the selected phenolic substrates, and the kinetic parameters obtained were found to correlate well with the steric requirements of the substrates and with their hydrophobicity. In the course of the investigation, a novel ¹H NMR method was used to facilitate measurement of the UV molar absorption coefficients of the o-quinones in reaction mixtures, thus avoiding the necessity to isolate these unstable, water-sensitive products. The biocatalytic system was extended to a continuous process, in which the immobilised enzyme was shown to function successfully in the chloroform medium for several hours, with high conversion rates. Modifications, involving partial purification and the addition of a surfactant, were investigated to determine their effect on the kinetic parameters. The results obtained using partially purified enzyme indicated that the removal of extraneous protein and/or melanoid material lead to a reduced capacity for conversion of sterically demanding substrates. The addition of the anionic detergent, sodium dodecyl sulphate (SOS), enhanced the ability of the biocatalyst to bind and oxidise sterically demanding substrates. These effects are attributed to changes in the polar state of groups within the protein binding pocket, which result in altered flexibility and hydrophobicity. Computer modelling of several biomimetic dinuclear copper complexes also indicated the importance of flexibility for effective biocatalysis. Novel binuclear copper (II complexes, containing a flexible biphenyl spacer and imidazole or benzimidazole donors, were prepared and analysed using NMR, UV, AA and cyclic voltammetric techniques. The complexes were also shown, in a detailed kinetic study, to mimic the catecholase activity of polyphenol oxidase by oxidising 3,5-di-tertbutylcatechol, and to catalyse the coupling of the phenolic substrate 2,4-di-tert-butylphenol. However, the complexes were apparently too flexible to react with smaller substrates. These biomimetic complexes provided valuable insights into the nature of the dinuclear copper binding site.
18

Polyphenal oxidase activity and dark pigment of oospore walls in Chara Globularis

Glinternick, Michael F. 01 January 1980 (has links)
No description available.
19

Kinetic studies and continuous analysis in flowing streams of monamine oxidase activity by amperometric measurement at a tubular electrode /

Mason, William David January 1969 (has links)
No description available.
20

Spectroelectrochemical investigation of cytochrome c̲ and cytochrome c̲ oxidase /

Mackey, Larry Neil January 1975 (has links)
No description available.

Page generated in 0.0425 seconds