• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling Carbon Allocation, Growth And Recovery In Scrub Oaks Experiencing Aboveground Disturbance

Seiler, Troy J 01 January 2011 (has links)
Allocation of assimilated carbon amongst plant metabolic processes and tissues is important to understanding ecosystem carbon cycles. Due to the range of spatio-temporal scales and complex process interactions involved, direct measurements of allocation in natural environments are logistically difficult. Modeling approaches provide tools to examine these patterns by integrating finer scale process measurements. One such method is root:shoot balance, where plant growth is limited by either shoot activity (i.e. photosynthesis) or root activity (i.e. water and nutrient uptake). This method shows promise for application on frequently disturbed systems which perturb aboveground biomass and thus create imbalances in root and shoot activities. In this study, root:shoot balance, allometric relationships and phenological patterns were used to model carbon allocation and growth in Florida scrub oaks. The model was tested using ecosystem gas exchange (i.e. eddy covariance) and meteorological data from two independent sites at Merritt Island National Wildlife Refuge, FL which experienced two different types of disturbance events: a prescribed burn in 2006 and wind damage from Hurricane Frances in 2004. The effects of the two disturbance events, which differed greatly in magnitude and impact, were compared to identify similarities and differences in plant allocation response. Model results and process-based sensitivity analysis demonstrated the strong influence of autotrophic respiration on plant growth and allocation processes. Also, fine root dynamics were found to dominate partitioning trends of carbon allocated to growth. Overall, model results aligned well with observed biomass trends, with some discrepancies that suggest fine root turnover to be more dynamic than currently iv parameterized in the model. This modeling approach can be extended through the integration with more robust process models, for example, mechanistic photosynthesis, nitrogen uptake and/or dynamic root turnover models.
2

Characterizing The Vertical Structure And Structural Diversity Of Florida Oak Scrub Vegetation Using Discrete-return Lidar

Angelo, James J. 01 January 2010 (has links)
Vertical structure, the top-to-bottom arrangement of aboveground vegetation, is an important component of forest and shrubland ecosystems. For many decades, ecologists have used foliage height profiles and other measures of vertical structure to identify discrete stages in post-disturbance succession and to quantify the heterogeneity of vegetation. Such studies have, however, required resource-intensive field surveys and have been limited to relatively small spatial extents (e.g.,

Page generated in 0.0432 seconds