• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 348
  • 42
  • 20
  • 13
  • 10
  • 8
  • 5
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 541
  • 541
  • 253
  • 210
  • 173
  • 134
  • 113
  • 111
  • 108
  • 89
  • 87
  • 80
  • 75
  • 74
  • 73
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Stanovení pozice objektu / Detection of object position

Baáš, Filip January 2019 (has links)
Master’s thesis deals with object pose estimation using monocular camera. As an object is considered every rigid, shape fixed entity with strong edges, ideally textureless. Object position in this work is represented by transformation matrix, which describes object translation and rotation towards world coordinate system. First chapter is dedicated to explanation of theory of geometric transformations and intrinsic and extrinsic parameters of camera. This chapter also describes detection algorithm Chamfer Matching, which is used in this work. Second chapter describes all development tools used in this work. Third, fourth and fifth chapter are dedicated to practical realization of this works goal and achieved results. Last chapter describes created application, that realizes known object pose estimation in scene.
272

Detekce chodců ve snímku pomocí metod strojového učení / Pedestrians Detection in Traffic Environment by Machine Learning

Tilgner, Martin January 2019 (has links)
Tato práce se zabývá detekcí chodců pomocí konvolučních neuronových sítí z pohledu autonomního vozidla. A to zejména jejich otestováním ve smyslu nalezení vhodné praxe tvorby datasetu pro machine learning modely. V práci bylo natrénováno celkem deset machine learning modelů meta architektur Faster R-CNN s ResNet 101 jako feature extraktorem a SSDLite s feature extraktorem MobileNet_v2. Tyto modely byly natrénovány na datasetech o různých velikostech. Nejlépší výsledky byly dosaženy na datasetu o velikosti 5000 snímků. Kromě těchto modelů byl vytvořen nový dataset zaměřující se na chodce v noci. Dále byla vytvořena knihovna Python funkcí pro práci s datasety a automatickou tvorbu datasetu.
273

Sledování pohybu míče ve videu / Ball Tracking in Sports Video

Motlík, Matúš January 2019 (has links)
This master's thesis deals with automatic detection and tracking of a soccer ball in sports videos. Based on the introduced techniques focusing on tracking of small objects in high-resolution videos, effective convolutional neural networks are designed and used by a modified version of tracking algorithm SORT for automatic object detection. A set of experiments with the processing of images in different resolutions and with various frequencies of detection extraction is carried out in order to examine the trade-off between processing speed and tracking accuracy. The obtained results of experiments are presented and used to form proposals for future work, which could lead to improvements in tracking accuracy while maintaining reasonable processing speed.
274

Návrh rozhodovacích stromů na základě evolučních algoritmů / Decision Tree Design Based on Evolutionary Algorithms

Benda, Ondřej January 2012 (has links)
Tato diplomová práce pojednává o dvou algoritmech pro dolování z proudu dat - Very Fast Decision Tree (VFDT) a Concept-adapting Very Fast Decision Tree (CVFDT). Je vysvětlen princip klasifikace rozhodovacím stromem. Je popsána základní myšlenka konstrukce stromu Hoeffding Tree, který je základem pro algoritmy VFDT a CVFDT. Tyto algoritmy jsou poté rozebrány detailněji. Dále se tato práce zabývá návrhem algoritmu Genetického Programování (GP), který je použit pro vytváření klasifikátoru obrazových dat. Vytvořený klasifikátor je použit jako alternativní způsob klasifikace objektů v obraze ve frameworku Viola-Jones. V práci je rozebrána implementace algoritmů, které jsou implementovány v jazyce Java. Algoritmus GP je integrován do knihovny “Image Processing Extension” programu RapidMiner. Algoritmy VFDT a CVFDT jsou testovány na syntetických a reálných textových datech. Algoritmus GP je testován na klasifikaci obrazových dat a následně vytvořený klasifikátor je otestován na detekci obličejů v obraze.
275

Detekce objektů v obraze s pomocí Haarových příznaků / Image object detection using Haar-like features

Mašek, Jan January 2012 (has links)
This thesis deals with the image object detection using Haar--like features and AdaBoost algorithm. The text describes methods how to train and test an object detector. The main contributon of this thesis consists in creation image object detector in Java programming language. Created algorithms were integrated as plugin into the RapidMiner tool, which is widely used and known worldwide as tool for data mining. The thesis contains the instructions for created operators and few exaples for executing in RapidMiner tool. The functionality of image object detector was demonstrated on selected medical images.
276

Detektor objektů v obrazech založený na metodě C4 / Image object detector based on C4 algorithm

Vylíčil, Radek January 2015 (has links)
This thesis deals with the image object detection using Contour cues. The text describes methods how to train and test object detector. The main contribution of this thesis consists in creation Feature extractor for creation object detector in Java programming. The functionality of object detector was demonstrated on medical images.
277

Všesměrová detekce objektů / Multiview Object Detection

Lohniský, Michal January 2014 (has links)
This thesis focuses on modification of feature extraction and multiview object detection learning process. We add new channels to detectors based on the "Aggregate channel features" framework. These new channels are created by filtering the picture by kernels from autoencoders followed by nonlinear function processing. Experiments show that these channels are effective in detection but they are also more computationally expensive. The thesis therefore discusses possibilities for improvements. Finally the thesis evaluates an artificial car dataset and discusses its small benefit on several detectors.
278

Extraction of Key-Frames from an Unstable Video Feed

Vempati, Nikhilesh 13 July 2017 (has links)
The APOLI project deals with Automated Power Line Inspection using Highly-automated Unmanned Aerial Systems. Beside the Real-time damage assessment by on-board high-resolution image data exploitation a postprocessing of the video data is necessary. This Master Thesis deals with the implementation of an Isolator Detector Framework and a Work ow in the Automotive Data and Time-triggered Framework(ADTF) that loads a video direct from a camera or from a storage and extracts the Key Frames which contain objects of interest. This is done by the implementation of an object detection system using C++ and the creation of ADTF Filters that perform the task of detection of the objects of interest and extract the Key Frames using a supervised learning platform. The use case is the extraction of frames from video samples that contain Images of Isolators from Power Transmission Lines.
279

Detekce objektů pro kamerový dohled pomocí SSD přístupu / Object detection for video surveillance using the SSD approach

Dobranský, Marek January 2019 (has links)
The surveillance cameras serve various purposes ranging from security to traffic monitoring and marketing. However, with the increasing quantity of utilized cameras, manual video monitoring has become too laborious. In re- cent years, a lot of development in artificial intelligence has been focused on processing the video data automatically and then outputting the desired no- tifications and statistics. This thesis studies the state-of-the-art deep learning models for object detection in a surveillance video and takes an in-depth look at SSD architecture. We aim to enhance the performance of SSD by updating its underlying feature extraction network. We propose to replace the initially used VGG model by a selection of modern ResNet, Xception and NASNet classifica- tion networks. The experiments show that the ResNet50 model offers the best trade-off between speed and precision, while significantly outperforming VGG. With a series of modifications, we improved the Xception model to match the ResNet performance. On top of the architecture-based improvements, we ana- lyze the relationship between SSD and a number of detected classes and their selection. We also designed and implemented a new detector with the use of temporal context provided by the video frames. This detector delivers enhanced precision while...
280

Automatic Man Overboard Detection with an RGB Camera : Using convolutional neural networks

Bergekrans, William January 2022 (has links)
Man overboard is one of the most common and dangerous accidents that can occur whentraveling on a boat. Available research on man overboard systems with cameras have focusedon man overboard taking place from larger ships, which involves a fall from a height.Recreational boat manufacturers often use cord-based kill switches that turns of the engineif the wearer falls overboard. The aim of this thesis is to create a man overboard warningsystem based on state-of-the-art object detection models that can detect man overboard situationthrough inputs from a camera. Awell performing warning system would allow boatmanufactures to comply with safety regulations and expand the kill-switch coverage to allpassengers on the boat. Furthermore, the aim is also to create two new datasets: one dedicatedto human detection and one with man overboard fall sequences. YOLOv5 achievedthe highest performance on a new human detection dataset, with an average precision of97%. A Mobilenet-SSD-v1 network based on weights from training on the PASCAL VOCdataset and additional training on the new man overboard dataset is used as the detectionmodel in final warning system. The man overboard warning system achieves an accuracyof 50% at best, with a precision of 58% and recall of 78%.

Page generated in 0.1069 seconds