Spelling suggestions: "subject:"ocean waves"" "subject:"ocean saves""
191 |
The behavior of the near ocean surface under the combined action of waves and currents in shallow waterYoussef, Mohamed Mohamed. January 1993 (has links)
Thesis (Ph. D.)--University of Rhode Island, 1993. / Includes bibliographical references (leaves 173-181).
|
192 |
An investigation into wave run-up on vertical surface piercing cylinders in monochromatic wavesMorris-Thomas, Michael January 2003 (has links)
[Formulae and special characters can only be approximated here. Please see the pdf version of the abstract for an accurate reproduction.] Wave run-up is the vertical uprush of water when an incident wave impinges on a free- surface penetrating body. For large volume offshore structures the wave run-up on the weather side of the supporting columns is particularly important for air-gap design and ultimately the avoidance of pressure impulse loads on the underside of the deck structure. This investigation focuses on the limitations of conventional wave diffraction theory, where the free-surface boundary condition is treated by a Stokes expansion, in predicting the harmonic components of the wave run-up, and the presentation of a simplified procedure for the prediction of wave run-up. The wave run-up is studied on fixed vertical cylinders in plane progressive waves. These progressive waves are of a form suitable for description by Stokes' wave theory whereby the typical energy content of a wave train consists of one fundamental harmonic and corresponding phase locked Fourier components. The choice of monochromatic waves is indicative of ocean environments for large volume structures in the diffraction regime where the assumption of potential flow theory is applicable, or more formally A/a < Ο(1) (A and a being the wave amplitude and cylinder radius respectively). One of the unique aspects of this work is the investigation of column geometry effects - in terms of square cylinders with rounded edges - on the wave run-up. The rounded edges of each cylinder are described by the dimensionless parameter rc/a which denotes the ratio of edge corner radius to half-width of a typical column with longitudinal axis perpendicular to the quiescent free-surface. An experimental campaign was undertaken where the wave run-up on a fixed column in plane progressive waves was measured with wire probes located close to the cylinder. Based on an appropriate dimensional analysis, the wave environment was represented by a parametric variation of the scattering parameter ka and wave steepness kA (where k denotes the wave number). The effect of column geometry was investigated by varying the edge corner radius ratio within the domain 0 <=rc/a <= 1, where the upper and lower bounds correspond to a circular and square shaped cylinder respectively. The water depth is assumed infinite so that the wave run-up caused purely by wave-structure interaction is examined without the additional influence of a non-decaying horizontal fluid velocity and finite depth effects on wave dispersion. The zero-, first-, second- and third-harmonics of the wave run-up are examined to determine the importance of each with regard to local wave diffraction and incident wave non-linearities. The modulus and phase of these harmonics are compared to corresponding theoretical predictions from conventional diffraction theory to second-order in wave steepness. As a result, a basis is formed for the applicability of a Stokes expansion to the free-surface boundary condition of the diffraction problem, and its limitations in terms of local wave scattering and incident wave non-linearities. An analytical approach is pursued and solved in the long wavelength regime for the interaction of a plane progressive wave with a circular cylinder in an ideal fluid. The classical Stokesian assumption of infinitesimal wave amplitude is invoked to treat the free-surface boundary condition along with an unconventional requirement that the cylinder width is assumed much smaller than the incident wavelength. This additional assumption is justified because critical wavelengths for wave run-up on a fixed cylinder are typically much larger in magnitude than the cylinder's width. In the solution, two coupled perturbation schemes, incorporating a classical Stokes expansion and cylinder slenderness expansion, are invoked and the boundary value problem solved to third-order. The formulation of the diffraction problem in this manner allows for third-harmonic diffraction effects and higher-order effects operating at the first-harmonic to be found. In general, the complete wave run-up is not well accounted for by a second-order Stokes expansion of the free-surface boundary condition and wave elevation. This is however, dependent upon the coupling of ka and kA. In particular, whilst the modulus and phase of the second-harmonic are moderately predicted, the mean set-up is not well predicted by a second-order Stokes expansion scheme. This is thought to be caused by higher than second-order non-linear effects since experimental evidence has revealed higher-order diffraction effects operating at the first-harmonic in waves of moderate to large steepness when k < < 1. These higher-order effects, operating at the first-harmonic, can be partially accounted for by the proposed long wavelength formulation. For small ka and large kA, subsequent comparisons with measured results do indeed provide a better agreement than the classical linear diffraction solution of Havelock (1940). To account for the complete wave run-up, a unique approach has been adopted where a correction is applied to a first-harmonic analytical solution. The remaining non-linear portion is accounted for by two methods. The first method is based on regression analysis in terms of ka and kA and provides an additive correction to the first-harmonic solution. The second method involves an amplification correction of the first-harmonic. This utilises Bernoulli's equation applied at the mean free-surface position where the constant of proportionality is empirically determined and is inversely proportional to ka. The experimental and numerical results suggest that the wave run-up increases as rc/a--› 0, however this is most significant for short waves and long waves of large steepness. Of the harmonic components, experimental evidence suggests that the effect of a variation in rc/a on the wave run-up is particularly significant for the first-harmonic only. Furthermore, the corner radius effect on the first-harmonic wave run-up is well predicted by numerical calculations using the boundary element method. Given this, the proposed simplified wave run-up model includes an additional geometry correction which accounts for rc/a to first-order in local wave diffraction. From a practical view point, it is the simplified model that is most useful for platform designers to predict the wave run-up on a surface piercing column. It is computationally inexpensive and the comparison of this model with measured results has proved more promising than previously proposed schemes.
|
193 |
Longshore sediment transport : applied wave power approach, field data analysis and evaluation of formulaeSchoonees, Jacobus Stefanus 12 1900 (has links)
Thesis (PhD)--University of Stellenbosch, 2001. / ENGLISH ABSTRACT: The process of sand being moved parallel to the coast by wave and current action is called longshore
(sediment) transport. Knowledge oflongshore transport is essential for the design of breakwaters at
harbour entrances, for navigation channels and for calculating the amount of dredging they require,
for beach improvement schemes and for the determination of the stability of inlets and estuaries.
Different aspects oflongshore transport have been investigated, namely, (1) analysis offield data, (2)
evaluation oflongshore transport formulae and (3) the development of the wave power approach as
an alternative method to calculate longshore transport.
In the development of a better understanding oflongshore sediment transport, the following has been
done for the first time: (1) a comprehensive data set has been compiled covering almost a full range
of conditions occurring on natural beaches; and (2) virtually all longshore transport formulae have
been evaluated against this extensive data set. A new improved method, the applied wave power
approach, has been developed and extensively calibrated against the same data set. Based on this
evaluation, guidelines are now available for design engineers as to which are the best bulk and
detailed predictors oflongshore sediment transport. These are respectively, the recalibrated Kamphuis
formula and the applied wave power approach.
Another useful first, is the derivation of confidence intervals for a longshore transport formula,
showing what accuracy can be obtained and that accurate predictions are now possible. In addition,
it has now been determined what the minimum required measurement period should be and what the
most cost-effective way is for obtaining the true long-term mean net longshore transport rate at a
particular site. / AFRIKAANSE OPSOMMING: Die proses waarvolgens sand ewewydig aan die kus deur golf- en stroomwerking vervoer word, word
langsstrandse (sediment-) vervoer oflangsvervoer genoem. Kennis van langsvervoer is noodsaaklik
vir die ontwerp van golfbrekers by hawe-ingange, navigasiekanale en vir die berekening van die
hoeveelheid baggerwerk daarvoor benodig, strandverbeteringskemas en vir die bepaling van die
stabiliteit van inlate en getyriviere.
Verskillende aspekte van langsvervoer is ondersoek, naarnlik, (1) die ontleding van velddata, (2) die
beoordeling van langsvervoerformules en (3) die ontwikkeling van die golfdrywingsbenadering as 'n
altematiewe metode om langsvervoer mee te bereken ..
Tydens die ontwikkeling van 'n beter begrip van langsstrandse sedimentvervoer is die volgende vir
die eerste keer gedoen: (1) 'n omvattende datastel is versamel wat bykans aIle toestande wat aan
natuurlike strande voorkom, dek; en (2) feitlik aile langsvervoerformules is teen hierdie uitgebreide
datastel beoordeel. 'n Nuwe verbeterde metode, die aangewende golfdrywingsbenadering, is
ontwikkel en omvattend teen dieselfde datastel geyk. Gebaseer op hierdie beoordeling, is riglyne nou
vir ontwerp-ingenieurs beskikbaar rakende watter totaal- en detail-iangsvervoervoorspellers die beste
is. Dit is onderskeidelik die hergeykte Kamphuisformule en die aangewende golfdrywingsbenadering.
Nog 'n nuttige eerste is die afleiding van betroubaarheidsgrense vir 'n langsvervoerformule, wat wys
watter akkuraatheid nou haalbaar is en dat noukeurige voorspellings nou moontlik is. Verder is dit
nou vasgestel wat die vereiste meettydperk behoort te wees en wat die mees koste-effektiewe manier
is waarop die ware langtermyn-gemiddelde netto langsvervoertempo by 'n spesifieke terrein verkry
kan word.
|
194 |
Hydraulic stability of multi-layered sand-filled geotextile tube breakwaters under wave attackKriel, Herman Jacobus 12 1900 (has links)
ENGLISH ABSTRACT: Current understanding of the hydraulic stability of a stacked geotextile tube structure under wave attack is limited. Failure mechanisms that lead to instability are complicated and there is, as yet, no generic approved design method.
2D physical modelling in the large wave/current flume of the Stellenbosch University was done to test various set-up and hydraulic conditions to determine the hydraulic stability of a stacked geotextile tube structure against wave attack. Sixty-five test runs of approximately 1,000 waves each were run. Modelling was done on two different scales that had good similitude, despite the fact that the same geotextile and fill material were used in both.
The results provided by the physical modelling gave wave conditions larger than anticipated for hydraulic stability. It was found that the term ―failure‖ was too loosely defined in most cases and that, depending on the definition of structure failure the severity of the wave conditions at failure increased substantially. Sliding was found to be the key failure mechanism for a structure constructed from stacked, 80% sand filled, geotextile tubes. The crest tube receives the most severe loading and is the critical tube in the structure. Structures with double tube crests were found to be negligibly more stable than structures with single tube crests, but reduce energy transmission to the leeside of the structure. Impact loading of the structure combined with wave transmission over the structure explained the wave force on the crest tube of the structure.
A modified Goda (1974) method incorporating a wave reduction factor for wave transmission and an angle descriptive of the crest tube position were used. The descriptive angle was derived from results obtained from the physical modelling.
The use of this method provides results that correlate well with those found in the physical modelling and with results obtained in previous research. The method has the additional advantage that it is less constrained by limitations for application than those of previous studies / AFRIKAANSE OPSOMMING: Die begrip van die hidroliese stabiliteit van ‘n struktuur gebou uit gepakte geotekstielsandbuise teen golf aanval, is tans beperk. Faal meganismes wat lei tot die onstabiliteit van ‘n struktuur is ingewikkeld en daar is geen generiese aanvaarde ontwerp metode tans in gebruik nie.
2D fisiesemodellering is in die groot golfkanaal van die Universiteit Stellenbosch uitgevoer. ‘n Verskeidenheid van struktuur-uitlegte en hidroliese toestande is getoets om die hidroliese stabiliteit van die struktuur teen golf aanval te bepaal. ‘n Totaal van 65 toetse van ongeveer 1,000 golwe elk is voltooi. Modellering is op twee verskillende skale gedoen, wat goed vergelyk het ten spyte van die feit dat dieselfde geotekstiel en vul materiaal in albei gebruik is.
Resultate verkry vanaf die fisiese modellering het groter as verwagte golftoestande vir hidroliese stabiliteit gegee. Dit is gevind dat die definisie van faal (mislukking) in die meeste gevalle swak beskryf is en dat, afhangende van wat as faal van die struktuur beskou word, die golftoestande aansienlik beïnvloed word. Die skuif van die buise is die hoof faal meganisme vir ‘n gepakte geotekstielbuis-struktuur met ‘n vulpersentasie van 80%. Die buis op die kruin van die struktuur word die swaarste belas en is die kritiese buis in die struktuur. Strukture met dubbel buis kruine is onbeduidend meer stabiel as dié met slegs ‘n enkele buis as kruin. Die energie wat na die lysy van die struktuur oorgedra word, is egter beduidend minder. Impak belasting van die struktuur gekombineer met golf-transmissie oor die struktuur, verduidelik die stabiliteit van die buis op die kruin van die struktuur.
‘n Gemodifiseerde Goda (1974) metode met ‘n golfverminderigs faktor word gebruik om golf-transmissie oor die struktuur te akkommodeer, saam met ‘n hoek wat beskrywend is van die posisie van die kruin buis. Die beskrywende hoek is afgelei uit resultate verkry uit die fisiesemodellering.
Hierdie metode gee resultate wat goed korreleer met dié verskaf deur die fisiese modellering en die resultate van vorige navorsing oor geotekstielbuis stabiliteit. Die metode het ‗n bykomende voordeel deurdat dit minder begrens is deur beperkings m.b.t. toepassing as die van vorige studies.
|
195 |
Spatial variability of wave fields over the scale of a wave energy test siteAshton, Ian Gerard January 2011 (has links)
Accurate wave measurements are required for wave energy applications, including resource assessments and performance assessments. In response, wave data are measured from deployment sites, commonly using wave buoys or other point wave sensors. Spatial variability in the wave field will introduce inaccuracies to the analysis of data captured from a single point to represent a separate location or area. This thesis describes research undertaken to quantify the effect of spatial variability on the accuracy of direct wave measurements taken at a wave energy site. An array of four timesynchronised wave buoys were deployed, separated by 500m, in a location close to the Wave Hub wave energy test site in Cornwall, UK. These data were subject to close scrutiny in terms of data processing and quality control, which raised specific issues regarding data processing and the validation of wave data for a new measurement facility. Specific recommendations are made for data captured from this facility, and bespoke quality control routines were developed. This process minimises the possible contribution of errors to the processed data, which is observed to be of the highest importance when analysing simultaneous data sets, and provides a data set that is particularly suited to the examination of the spatial characteristics of ocean waves. The differences between simultaneous data demonstrated local physical processes to be causing a deterministic difference between the waves at the measurement sites, which contributed to a significant difference between the power statistics at different locations within the site. Instantaneous differences between measurements were observed to agree well with theoretical estimations of random error, based on sampling theory. The culmination of the research is a unique analysis of the spatial properties of ocean wave fields on the scale of a wave energy test site, of direct relevance to the development and monitoring of wave energy test sites.
|
196 |
Efficient numerical modelling of wave-structure interactionSiddorn, Philip David January 2012 (has links)
Offshore structures are required to survive in extreme wave environments. Historically, the design of these offshore structures and vessels has relied on wave-tank experiments and linear theory. Today, with advances in computing power, it is becoming feasible to supplement these methods of analysis with fully nonlinear numerical simulation. This thesis is concerned with the development of an efficient method to perform this numerical modelling, in the context of potential flow theory. The interaction of a steep ocean wave with a floating body involves a moving free surface and a wide range of length scales. Attempts to reduce the size of the simulation domain cause problems with wave reflection from the domain edge and with the accurate creation of incident waves. A method of controlling the wave field around a structure is presented. The ability to effectively damp an outgoing wave in a very short distance is demonstrated. Steep incident waves are generated without the requirement for the wave to evolve over a large time or distance before interaction with the body. This enables a general wave-structure interaction problem to be modelled in a small tank, and behave as if it were surrounded by a large expanse of water. The suitability of the boundary element method for performing this modelling is analysed. Potential improvements are presented with respect to accuracy, robustness, and computational complexity. Evidence of third order diffraction is found for an FPSO model.
|
197 |
Wave refraction over complex nearshore bathymetryPeak, Scott Douglas 12 1900 (has links)
Approved for public release, distribution is unlimited / Accurate predictions of nearshore wave conditions are critical to the success of military operations in the littoral environment. Although linear spectral-refraction theory is used by the main operational forecasting centers in the world for these predictions, owing to a lack of field studies its accuracy in regions of complex bathymetry such as steep shoals and submarine canyons is unknown. This study examines the accuracy of linear spectral-refraction theory in areas of complex nearshore bathymetry with three months of extensive wave data collected during the Nearshore Canyon Experiment (NCEX) held in the fall of 2003. The field site, off La Jolla California, is characterized by two submarine canyons that strongly affect the propagation of long period Pacific swell. Data from 7 directional waverider buoys, 17 bottom pressure recorders, and 12 pressure-velocity sensors, were examined and compared to predictions made by a high resolution spectral-refraction model. Analysis reveals large spatial variation in wave heights over the area especially in the vicinity of the canyon heads, where wave heights vary by as much as an order of magnitude over a few hundred meters. This extreme variation in wave conditions across the canyons is surprisingly well described by refraction theory with typical errors of nearshore wave height predictions of about 20 percent. / Lieutenant, Royal Australian Navy
|
198 |
Global observations of ocean surface winds and waves using spaceborne synthetic aperture radar measurements / Observations globales des vents et des vagues de surface de l'océan à l'aide de mesures de radars à synthèse d'ouverture spatiauxLi, Huimin 07 June 2019 (has links)
Les radars à synthèse d'ouverture (SAR) spatioportés ont fait la preuve de leur valeur inestimable dans l'observation des vents et des vagues océaniques mondiaux. Les images SAR acquises par plusieurs capteurs sont utilisées, notamment Sentinel-1 (S-1), Envisat/ASAR, Gaofen-3 et Radarsat-2. Cette thèse passe en revue les paramètres SAR couramment utilisés dans la première partie. Une série d'étapes d'étalonnage sont nécessaires pour obtenir un NRCS approprié et une évaluation du NRCS est effectuée pour le mode d'onde S-1 (WV). Il s'avère que WV est mal calibré et est donc recalibré pour obtenir un NRCS précis. Il a été démontré que la coupure de l'azimut est complémentaire du NRCS et peut expliquer l'impact de l'état de la mer sur l'extraction du vent. D'après les produits SAR entièrement polarimétriques disponibles, la coupure de l'azimut varie considérablement en fonction des polarisations. La transformation actuelle de la cartographie SAR est suffisante pour interpréter la coupure azimutale copolarisée, mais pas pour la polarisation croisée. Compte tenu des limites de l'imagerie SAR, un nouveau paramètre est proposé et défini en fonction du spectre croisé de l'image SAR, appelé MACS. La partie imaginaire de MACS est une quantité signée par rapport à la direction du vent. Compte tenu de cette dépendance, on s'attend à ce qu'un algorithme indépendant de récupération du vent en bénéficie. L'ampleur du MACS peut aider à estimer la fonction de modulation de la cartographie SAR. De plus, la MACS donne également des résultats prometteurs en ce qui concerne les études globales sur les vagues. Les signatures globales du MACS à différentes longueurs d'onde sont bien représentatives de la distribution spatiale et saisonnière des vents. Les MACS des vagues longues montrent des valeurs plus élevées sur les trajectoires des tempêtes alors que les vagues plus courtes sont principalement dans les vents des trader. Ces résultats devraient aider à évaluer les résultats du modèle et compléter les études ultérieures sur le climat spectral global des vagues. / Spaceborne synthetic aperture radar (SAR) has been demonstrated invaluable in observing the global ocean winds and waves. SAR images acquired by multiple sensors are employed, including Sentinel-1(S-1), Envisat/ASAR, Gaofen-3 and Radarsat-2. This thesis reviews the commonly used SAR parameters (NRCS and azimuth cutoff) in the first part. A series of calibration steps are required to obtain a proper NRCS and assessment of NRCS is carried out for S-1wave mode (WV). It turns out that WV is poorly calibrated and is thus re-calibrated to obtain accurate NRCS. Azimuth cut off is demonstrated to be complementary to NRCS and can account for the sea state impact on the wind retrieval. Based on the available fully polarimetric SAR products, azimuth cut off is found to vary greatly with polarizations. The present SAR mapping transformation is sufficient to interpret the co-polarized azimuth cut off, while not for the cross-polarization. With the limitations of SAR imaging in mind, a new parameter is proposed and defined based on the SAR image cross-spectra, termed as MACS. The imaginary part of MACS is found to be a signed quantity relative to the wind direction. Given this dependence, an independent wind retrieval algorithm is expected to benefit. The magnitude of MACS is able to aid for estimate of modulation function of SAR mapping. In addition, MACS also gives promising results regarding the global wave studies. The global signatures of MACS at various wave lengths are well representative of the winds distributions, spatially and seasonally. MACS of long waves shows greater values over the storm tracks while the shorter waves are mostly within the trader winds. These results are expected to help evaluate the model outputs and complement further studies of the global wave spectral climate. Data continuity in the coming 10 years shall extend the study towards longer duration.
|
199 |
Wave Ship Interaction in Transforming SeasUnknown Date (has links)
In near-shore transforming seas, as waves approach the shoreline, wave shoaling
and sometimes wave breaking take place due to the decreasing water depth. When
a ship advances through the transforming seas, the ship body and waves interact with
each other substantially and can lead to unknown motions of the ship hull. The physical
process of how the wave transforms in the surf zone and how the vehicle actually
behaves when it passes through the transforming seas is a complicated issue that
triggers considerable research interest.
The goal of my research is to characterize the dynamics of a high-speed surface
ship model in transforming seas through a parametric numerical study of the shipwave
interactions. In this study, the vehicle of interest is a surface effect ship (SES)
and we aim to contribute to developing a methodology for simulating the transforming
wave environment, including wave breaking, and its interactions with the SES.
The thesis work uses a commercial software package ANSYS Fluent to generate
numerical waves and model the interface between water and air using the volume
of fluid (VoF) method. A ship motion solver and the dynamic mesh are used to
enable the modeled ship to perform three degree-of-freedom (DoF) motion and the
near-region of the ship hull to deform as well as re-mesh. Non-conformal meshes with hybrid compositions of different cell types and various grid sizes are used in the
simulations for different purposes. Five user-defined functions (UDFs) are dynamically
linked with the flow solver to incorporates ship/grid motions, wave damping
and output of the numerical results. A series of steps were taken sequentially: 1)
validation for ship motions including simulation of a static Wigley hull under steady
flows to compare against previous experimental results by other researchers, and the
comparison between the static SES model under steady flows and the moving SES
model advancing in the calm water; 2) study of the ship with 3 DoF advancing in
calm water of both constant depth and varying depth; 3) validation for numerical
waves, including predictions of numerically progressive waves in both a regular tank
and a tank with a sloped fringing reef to compare with theoretical and experimental
results, respectively; 4) investigation of the transforming characteristics of the wave
traveling over the sloped fringing reef, which mimics the near-shore wave environment
and a study of the dynamics of the SES through transforming waves.
We find that the flow solver used in this study reliably models the wave profiles
along the ship hull. The comparison between a static SES in a current and a moving
SES in calm water at the same Froude number shows that although the velocity fields
around the vehicle are significantly different, the wave profiles inside and outside the
rigid cushion of the vehicle are similar and the resistance force experienced by the
vehicle in the two scenarios agree well over time. We conducted five numerical simulations
of the vehicle traveling from shallow water to deep water across the transition
zone for different Froude numbers. From the results, we find that as the Froude number
increases, the wave resistance force on the vehicle becomes larger in both shallow
water and deep water. In addition, the overall mean resistance force experienced by
the vehicle over the whole trip increases with the Froude number. Statistical analysis
of the wave motions suggests that the energy flux decreases dramatically in the
onshore direction as the waves break. The more severe the wave-breaking process, the greater the decrease in energy flux. Both the increase of Froude number and the
wave steepness apparently increase the resistance force on the vehicle in the shallow
water.
This thesis work captures the impact of the transforming characteristics of
the waves and closely replicates the behavior of how waves interact with a ship in
transforming seas through numerical modeling and simulation. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
|
200 |
Dynamic modeling and control of a 50 MW[subscript e] OTEC power plantThomas, Gregory Allen January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Gregory Allen Thomas. / M.S.
|
Page generated in 0.0571 seconds