• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automated rugosity values from high frequency multibeam sonar data for benthic habitat classification

Diurba, Erin S January 2007 (has links)
Thesis (M.S.)--University of Hawaii at Manoa, 2007. / Includes bibliographical references (leaves 94-96). / ix, 96 leaves, bound col. ill., col. maps 29 cm
2

Linking seafloor mapping and ecological models to improve classification of marine habitats : opportunities and lessons learnt in the Recherche Archipelago, Western Australia

Baxter, Katrina January 2008 (has links)
[Truncated abstract] Spatially explicit marine habitat data is required for effective resource planning and management across large areas, although mapped boundaries typically lack rigour in explaining what factors influence habitat distributions. Accurate, quantitative methods are needed. In this thesis I aimed to assess the utility of ecological models to determine what factors limit the spatial extent of marine habitats. I assessed what types of modeling methods were able to produce the most accurate predictions and what influenced model results. To achieve this, initially a broad scale marine habitat survey was undertaken in the Recherche Archipelago, on the south coast of Western Australia using video and sidescan sonar. Broad and more detailed functional habitats types were mapped for 1054km2 of the Archipelago. Broad habitats included high and low profile reefs, sand, seagrass and extensive rhodolith beds, although considerable variation could be identified from video within these broad types. Different densities of seagrass were identified and reefs were dominated by macroalgae, filter feeder communities, or a combination of both. Geophysical characteristics (depth, substrate, relief) and dominant benthic biota were recorded and then modelled using decision trees and a combination of generalised additive models (GAMs) and generalised linear models (GLMs) to determine the factors influencing broad and functional habitat variation. Models were developed for the entire Archipelago (n=2769) and a subset of data in Esperance Bay (n=797), which included exposure to wave conditions (mean maximum wave height and mean maximum shear stress) calculated from oceanographic models. Additional distance variables from the mainland and islands were also derived and used as model inputs for both datasets. Model performance varied across habitats, with no one method better than the other in terms of overall model accuracy for each habitat type, although prevalent classes (>20%) such as high profile reefs with macroalgae and dense seagrass were the most reliable (Area Under the Curve >0.7). ... This highlighted not only issues of data prevalence, but also how ecological models can be used to test the reliability of classification schemes. Care should be taken when mapping predicted habitat occurrence with broad habitat models. It should not be assumed that all habitats within the type will be defined spatially, as this may result in the distribution of distinctive and unique habitats such as filterfeeders being underestimated or not identified at all. More data is needed to improve prediction of these habitats. Despite the limitations identified, the results provide direction for future field sampling to ensure appropriate variables are sampled and classification schemes are carefully designed to improve descriptions of habitat distributions. Reliable habitat models that make ecological sense will assist future assessments of biodiversity within habitats as well as provide improved data on the probability of habitat occurrence. This data and the methods developed will be a valuable resource for reserve selection models that prioritise sites for management and planning of marine protected areas.
3

Establishing a sea bottom model by applying a multi-sensor acoustic remote sensing approach

Siemes, Kerstin 05 July 2013 (has links)
Detailed information about the oceanic environment is essential for many applications in the field of marine geology, marine biology, coastal engineering, and marine operations. Especially, knowledge of the properties of the sediment body is often required. Acoustic remote sensing techniques have become highly attractive for classifying the sea bottom and for mapping the sediment properties, due to their high coverage capabilities and low costs compared to common sampling methods. In the last decades, a number of different acoustic devices and related techniques for analyzing their signals have evolved. Each sensor has its specific application due to limitations in the frequency range and resolution. In practice, often a single acoustic tool is chosen based on the current application, supported by other non-acoustic data where required. However, different acoustic remote sensing techniques can supplement each other, as shown in this thesis. Even more, a combination of complementary approaches can contribute to the proper understanding of sound propagation, which is essential when using sound for environmental classification purposes. This includes the knowledge of the relation between acoustics and sediment properties, the focus of this thesis. Providing a detailed three dimensional picture of the sea bottom sediments that allows for gaining maximum insight into this relation is aimed at.<p><p><p>Chapters 4 and 5 are adapted from published work, with permission:<p>DOI:10.1121/1.3569718 (link: http://asadl.org/jasa/resource/1/jasman/v129/i5/p2878_s1) and<p>DOI:10.1109/JOE.2010.2066711 (link: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5618582&queryText%3Dsiemes)<p>In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of the Université libre de Bruxelles' products or services.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished

Page generated in 0.0989 seconds