• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 15
  • 15
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A digital laser slopemeter

Crossingham, Grant James January 2000 (has links)
No description available.
2

Remote sensing of the ocean surface using MF/HF radar

Sandham, W. A. January 1980 (has links)
No description available.
3

Aerosol Retrievals from CALIPSO Lidar Ocean Surface Returns

Venkata, Srikanth, Reagan, John 09 December 2016 (has links)
This paper describes approaches to retrieve important aerosol results from the strong lidar return signals that are received by the space-borne CALIPSO lidar system after reflecting off-ocean surfaces. Relations, from which the theoretically expected values of area under ocean surface returns can be computed, are presented. A detailed description of the lidar system response to the ocean surface returns and the processes of sampling and averaging of lidar return signals are provided. An effective technique that reconstructs the lidar response to surface returnsstarting from down-linked samplesand calculates the area under it, has been developed and described. The calculated area values are validated after comparing them to their theoretically predicted counterpart values. Methods to retrieve aerosol optical depths (AODs) from these calculated areas are described and retrieval results are presented, including retrieval comparison with independent AOD measurements made by an airborne High Spectral Resolution Lidar (HSRL) that yielded quite good agreement. Techniques and results are also presented on using the spectral ratios of the surface response areas to determine spectral ratios of aerosol round-trip transmission and AOD spectral difference, without need of a specific/accurate ocean-surface reflectance model.
4

Resolving the timing of major erosion events along the West Greenland-Baffin-Bylot continental margins

Jess, Scott January 2018 (has links)
Continental passive margins exhibit high elevation topography in many localities across the globe. The source and age of much of this topography remains a subject of great debate within the wider community, with numerous theories being presented, including significant post-rift uplift and isostatically preserved rift anks. Establishing the mechanisms that generate topography and the onshore evolution across passive margins is vital in understanding regional geological histories and their wider development. The passive margins of the NW Atlantic realm exhibit high elevation topography topped with low relief summits. The origin of this topography is debated, with both 3 km of uplift in the post-rift stage and the isostatic preservation of Cretaceous rift anks being suggested within the literature. The work of this thesis aims to resolve this debate by establishing the timing and source of uplift across the region and determining the onshore evolution prior to, during and after rifting with the application of apatite low temperature thermochronology. Contemporary analytical and modelling techniques are utilised to generate thermal histories from across both central West Greenland and SE Baffin Island, helping to de ne how the modern landscape has formed. Results from this work outline an onshore history dominated by uplift in the Cretaceous and exhumation throughout the Cenozoic. Basement samples from SW Greenland exhibit protracted cooling throughout the Mesozoic and Cenozoic, implying low rates of exhumation have been apparent throughout. Within the Nuussuaq Basin, centralWest Greenland, thermal histories display reheating i through the Late Cretaceous/Palaeogene and cooling to present, consistent with events outlined in the basin's stratigraphy and implying uplift of the topography is likely the result of extrusive volcanism and an isostatic response to the unroo ng of the lithosphere. Spatial trends in data and thermal histories across SE Ba n Island imply much of the landscape is shaped by rift ank uplift along its SE coastline, driving exhumation of the region throughout the Cenozoic. Collectively these results suggest the elevated topography of the NW Atlantic realm is the result of rift related uplift in the Cretaceous, magmatism and widespread exhumation throughout the Cenozoic, preserved by isostatic exure. This interpretation of the region's onshore history contributes greatly to our understanding of the NW Atlantic's geological evolution. The results highlight the role of extensional tectonism, exhumation and isostasy in shaping both margin's landscapes and helps to determine the principal characteristics of the wider extensional system and the evolution of the o shore domain. Moreover, these conclusions have a wider relevance to the evolution of passive margins across the North Atlantic, improving our understanding of how topography across other margins, such as of East Greenland, Norway and the UK, has formed.
5

Calibration and validation of high frequency radar for ocean surface current mapping

Kim, Kyung Cheol 06 1900 (has links)
Approved for public release, distribution is unlimited / High Frequency (HF) radar backscatter instruments are being developed and tested in the marine science and defense science communities for their abilities to sense surface parameters remotely in the coastal ocean over large areas. In the Navy context, the systems provide real-time mapping of ocean surface currents and waves critical for characterizing and forecasting the battle space environment. In this study, the performance of a network of four CODAR (Coastal Ocean Dynamics Application Radar) SeaSonde HF radars, using the Multiple Signal Classification (MUSIC) algorithm for direction finding, is described for the period between July to September 2003. Comparisons are made in Monterey Bay with moored velocity observations, with four radar baseline pairs, and with velocity observations from sixteen drifter deployments. All systems measure ocean surface current and all vector currents are translated into radial current components in the direction of the various radar sites. Measurement depths are 1 m for the HF radar-derived currents, 12 to 20 m for the ADCP bin nearest to the surface at the M1 mooring site, and 8 m for the drifter-derived velocity estimates. Comparisons of HF radar-M1 mooring buoy, HF radar-HF radar (baseline), and HF radar-drifter data yield improvements of - 1.7 to 16.7 cm/s rms differences and -0.03 to 0.35 correlation coefficients when measured antenna patterns are used. The mooring comparisons and the radar-to-radar baseline comparisons indicate angular shifts of 10Ê» to 30Ê» for radial currents produced using ideal antenna patterns and 0Ê» to 15Ê» angular shifts for radial currents produced using measured patterns. The comparisons with drifter-derived radial currents indicate that these angular biases are not constant across all look directions, even though the local antenna pattern distortions were taken into account through the use of measured antenna patterns. In particular, data from the SCRZ and MLNG radar sites show varied pointing errors across the range of angles covered. / Lieutenant Commander, Republic of Korea Navy
6

Adaptivní simulace rozsáhlého povrchu oceánu / Adaptive Simulation of Large-Scale Ocean Surface

Krijt, Filip January 2014 (has links)
Physically-driven methods of simulating fluid dynamics and frequency-based ocean surface synthesis methods are of long-standing interest for the field of computer graphics. However, they have been historically used separately or without any interaction between them. This thesis focuses on the possibility of combining the approaches into one adaptive solution by proposing methods for unified surface representation, method result blending and one-way interaction between the methods. The thesis also outlines several future developments of the combined method and proposes a level-of-detail approach taking advantage of hardware tessellation that can be used regardless of what method was used for the simulation. Powered by TCPDF (www.tcpdf.org)
7

Sea surface salinity retrieval error budget within the esa soil moisture and ocean salinity mission

Sabia, Roberto 13 October 2008 (has links)
L’oceanografia per satèl•lit ha esdevingut una integració consolidada de les tècniques convencionals de monitorització in situ dels oceans. Un coneixement precís dels processos oceanogràfics i de la seva interacció és fonamental per tal d’entendre el sistema climàtic. En aquest context, els camps de salinitat mesurats regularment constituiran directament una ajuda per a la caracterització de les variacions de la circulació oceànica global. La salinitat s’utilitza en models oceanogràfics predictius, pero a hores d’ara no és possible mesurar-la directament i de forma global. La missió Soil Moisture and Ocean Salinity (SMOS) (en català, humitat del sòl i salinitat de l’oceà) de l’Agència Espacial Europea pretén omplir aquest buit mitjançant la implementació d’un satèl•lit capaç de proveir aquesta informació sinòpticament i regular. Un nou instrument, el Microwave Imaging Radiometer by Aperture Synthesis (MIRAS) (en català, radiòmetre d’observació per microones per síntesi d’obertura), ha estat desenvolupat per tal d’observar la salinitat de la superfície del mar (SSS) als oceans a través de l’adquisició d’imatges de la radiació de microones emesa al voltant de la freqüència de 1.4 GHz (banda L). SMOS portarà el primer radiòmetre orbital, d’òrbita polar, interferomètric 2D i es llençarà a principis de 2009. Així com a qualsevol altra estimació de paràmetres geofísics per teledetecció, la recuperació de la salinitat és un problema invers que implica la minimització d’una funció de cost. Per tal d’assegurar una estimació fiable d’aquesta variable, la resta de paràmetres que afecten a la temperatura de brillantor mesurada s’ha de tenir en compte, filtrar o quantificar. El producte recuperat seran doncs els mapes de salinitat per a cada passada del satèl•lit sobre la Terra. El requeriment de precisió proposat per a la missió és de 0.1 ‰ després de fer el promig en finestres espaciotemporals de 10 dies i de 20x20. En aquesta tesi de doctorat, diversos estudis s’han dut a terme per a la determinació del balanç d’error de la salinitat de l’oceà en el marc de la missió SMOS. Les motivacions de la missió, les condicions de mesura i els conceptes bàsics de radiometria per microones es descriuen conjuntament amb les principals característiques de la recuperació de la salinitat. Els aspectes de la recuperació de la salinitat que tenen una influència crítica en el procés d’inversió són: • El biaix depenent de l’escena en les mesures simulades, • La sensibilitat radiomètrica (soroll termal) i la precisió radiomètrica, • La definició de la modelització directa banda L • Dades auxiliars, temperatura de la superfície del mar (SST) i velocitat del vent, incerteses, • Restriccions en la funció de cost, particularment en el terme de salinitat, i • Promig espacio-temporal adequat. Un concepte emergeix directament de l’enunciat del problema de recuperació de la salinitat: diferents ajustos de l’algoritme de minimització donen resultats diferents i això s’ha de tenir en compte. Basant-se en aquesta consideració, la determinació del balanç d’error s’ha aproximat progressivament tot avaluant l’extensió de l’impacte de les diferents variables, així com la parametrització en termes d’error de salinitat. S’ha estudiat l’impacte de diverses dades auxiliars provinents de fonts diferents sobre l’error SSS final. Això permet tenir una primera impressió de l’error quantitatiu que pot esperar-se en les mesures reals futures, mentre que, en un altre estudi, s’ha investigat la possibilitat d’utilitzar senyals derivats de la reflectometria per tal de corregir les incerteses de l’estat del mar en el context SMOS. El nucli d’aquest treball el constitueix el Balanç d’Error SSS total. S’han identificat de forma consistent les fonts d’error i s’han analitzat els efectes corresponents en termes de l’error SSS mig en diferents configuracions d’algoritmes. Per una altra banda, es mostren els resultats d’un estudi de la variabilitat horitzontal de la salinitat, dut a terme utilitzant dades d’entrada amb una resolució espacial variable creixent. Això hauria de permetre confirmar la capacitat de la SSS recuperada per tal reproduir característiques oceanogràfiques mesoscàliques. Els principals resultats i consideracions derivats d’aquest estudi contribuiran a la definició de les bases de l’algoritme de recuperació de la salinitat. / Satellite oceanography has become a consolidated integration of conventional in situ monitoring of the oceans. Accurate knowledge of the oceanographic processes and their interaction is crucial for the understanding of the climate system. In this framework, routinely-measured salinity fields will directly aid in characterizing the variations of the global ocean circulation. Salinity is used in predictive oceanographic models, but no capability exists to date to measure it directly and globally. The European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) mission aims at filling this gap through the implementation of a satellite that has the potential to provide synoptically and routinely this information. A novel instrument, the Microwave Imaging Radiometer by Aperture Synthesis, has been developed to observe the sea surface salinity (SSS) over the oceans by capturing images of the emitted microwave radiation around the frequency of 1.4 GHz (L-band). SMOS will carry the first-ever, polar-orbiting, space-borne, 2-D interferometric radiometer and will be launched in early 2009. Like whatsoever remotely-sensed geophysical parameter estimation, the retrieval of salinity is an inverse problem that involves the minimization of a cost function. In order to ensure a reliable estimation of this variable, all the other parameters affecting the measured brightness temperature will have to be taken into account, filtered or quantified. The overall retrieved product will thus be salinity maps in a single satellite overpass over the Earth. The proposed accuracy requirement for the mission is specified as 0.1 ‰ after averaging in a 10-day and 2ºx2º spatio-temporal boxes. In this Ph.D. Thesis several studies have been performed towards the determination of an ocean salinity error budget within the SMOS mission. The motivations of the mission, the rationale of the measurements and the basic concepts of microwave radiometry have been described along with the salinity retrieval main features. The salinity retrieval issues whose influence is critical in the inversion procedure are: • Scene-dependent bias in the simulated measurements, • Radiometric sensitivity (thermal noise) and radiometric accuracy, • L-band forward modeling definition, • Auxiliary data, sea surface temperature (SST) and wind speed, uncertainties, • Constraints in the cost function, especially on salinity term, and • Adequate spatio-temporal averaging. A straightforward concept stems from the statement of the salinity retrieval problem: different tuning and setting of the minimization algorithm lead to different results, and complete awareness of that should be assumed. Based on this consideration, the error budget determination has been progressively approached by evaluating the extent of the impact of different variables and parameterizations in terms of salinity error. The impact of several multi-sources auxiliary data on the final SSS error has been addressed. This gives a first feeling of the quantitative error that should be expected in real upcoming measurements, whilst, in another study, the potential use of reflectometry-derived signals to correct for sea state uncertainty in the SMOS context has been investigated. The core of the work concerned the overall SSS Error Budget. The error sources are consistently binned and the corresponding effects in terms of the averaged SSS error have been addressed in different algorithm configurations. Furthermore, the results of a salinity horizontal variability study, performed by using input data at increasingly variable spatial resolution, are shown. This should assess the capability of retrieved SSS to reproduce mesoscale oceanographic features. Main results and insights deriving from these studies will contribute to the definition of the salinity retrieval algorithm baseline.
8

Assessing and Improving the Representation of Hydrologic Processes in Atmospheric, Ocean, and Land Modeling and Dataset Generation

Brunke, Michael January 2015 (has links)
Water is essential to life on Earth. Since water exists in all three phases (solid, liquid, and gas) on Earth, it exists in various reservoirs throughout the planet that compose the hydrologic cycle, and its movement through these reservoirs requires energy. Thus, water is a key component of the energy balance of the Earth. Despite its importance, its representation in modeling and dataset generation is problematic. Here, the depiction of three phenomena, ocean surface turbulent fluxes, humidity inversions, and groundwater, are assessed, and suggestions for improvements of their representations are made. First, ocean surface turbulent fluxes, including those of moisture (latent heat flux), heat (sensible heat flux), and momentum (wind stress), from reanalysis, satellite-derived, and combined products which are commonly used to produce climatologies and to evaluate global climate models are compared to in situ observations from ship cruises to ascertain which products are the least problematic. The National Aeronautics and Space Administration’s reanalysis, the Modern Era Retrospective Analysis for Research and Applications, is the least problematic for all three fluxes, while a couple of others are the least problematic for only one of the three fluxes. Also, the product biases are disaggregated into uncertainties from the grid cell mean quantities, or bulk variables, used plus the residual uncertainties which includes the algorithm uncertainties due to the parameterization used to relate the small-scale turbulent processes to the large-scale bulk variables. The latter contribute the most to the majority of product latent heat fluxes, while both uncertainties can contribute the most to product sensible heat fluxes and wind stress. Thus, both algorithms and bulk variables need to be improved in ocean surface flux datasets. Second, humidity inversion climatologies in five reanalyses are evaluated. Humidity inversions, similar to its thermal counterpart, are layers in which specific humidity increases with height rather than the usual decrease with height. These are especially persistent in the polar regions in autumn and winter. However, Arctic inversions are the strongest in summer corresponding to the time of year that low cloud cover is the highest. Comparing the reanalysis inversions to radiosonde observations reveals some problems with the realization of humidity inversions in reanalyses including the misrepresentation of the diurnal cycle and of the overproduction of inversions in areas outside the polar regions. Finally, the simulation of groundwater in the Community Land Model (CLM) as used in the Community Earth System Model is made more realistic by including variable soil thickness. Because the bottom of the model soil column is placed at effectively bedrock, the unconfined aquifer model currently used in CLM is removed and a zero bottom water flux is put in place. The removal of the unconfined aquifer allows the simulation of groundwater to not be treated separately from soil moisture. The model is most affected where the number of soil layers is reduced from the original constant 10 layers and largely unaffected where the number of soil layers is increased except for baseflow where the mean annual range in rainfall is large.
9

Mesoscale Turbulence on the Ocean Surface from Satellite Altimetry

Khatri, Hemant January 2015 (has links) (PDF)
The dynamics captured in the ocean surface current data provided by satellite altimetry has been a subject of debate since the past decade. In particular, the contribution of surface and interior dynamics to altimetry remains unclear. One avenue to settling this issue is to compare the turbulence (for example, the nature of spectra and interscale fluxes) captured by altimetry to theories of two-dimensional, surface and interior quasigeostrophic turbulence. In this thesis, we focus on mesoscales (i.e., scales of the order of few hundred kms) that are well resolved by altimetry data. Aspects of two dimensional, three dimensional, geotropic and surface quasigeostrophic turbulence are revisited and compared with the observations. Specifically, we compute kinetic energy (KE) spectra and fluxes in five geographical regions (all over the globe) using 21 years of 0.25◦resolution daily data as provided by the AVISO project. We report a strong forward cascade of KE at small scales (accompanied by a spectral scaling of the form k−3) and a robust inverse cascade at larger scales. Further, we show that the small diver-gent part in horizontal velocity data drives the strong forward flux of KE. Indeed, on considering only the non-divergent part of the flow, in accord with incompressible two-dimensional turbulence, the inverse cascade is unaffected, but the forward transfer becomes very weak and the spectral slopes over this range of scales tend to a relatively steeper k−3.5scaling. We note that our results do not agree with interior first bar clinic mode quasigeostrophic (incorrect strength of forward flux) or surface-quasigeostrophic (incorrect spectral slopes) turbulence. Rather, the results are compatible with rotating shallow water and rotating stratified Boussinesq models in which condition of geostrophic balance is dominant but the divergence of horizontal velocity field is not exactly zero. Having seen the “mean” picture of fluxes and spectra from altimetry, in the second part of the thesis we investigate the variability of these entities. In particular, we employ Empirical Or-thogonal Function (EOF) analysis and focus on the variability in the spectral flux. Remarkably, over the entire globe, irrespective of the region under consideration, we see that the first two EOFs explain a large part of the variability in flux anomalies. The geometry of these modes is distinct, the first represents a single signed transfer across scales (i.e. large to small or small to large depending on the sign of the associated principal component), while the second is a mixed mode in that it exhibits a forward/inverse transfer at large/small scales.
10

New methods for detecting dynamic and thermodynamic characteristics of sea ice from radar remote sensing

Komarov, Alexander January 2014 (has links)
This dissertation presents new methods for detecting dynamic and thermodynamic characteristics of Arctic sea ice using radar remote sensing. A new technique for sea ice motion detection from sequential satellite synthetic aperture radar (SAR) images was developed and thoroughly validated. The accuracy of the system is 0.43 km obtained from a comparison between SAR-derived ice motion vectors and in-situ sea ice beacon trajectories. For the first time, we evaluated ice motion tracking results derived from co-polarization (HH) and cross-polarization (HV) channels of RADARSAT-2 ScanSAR imagery and formulated a condition where the HV channel is more reliable than the HH channel for ice motion tracking. Sea ice motion is substantially controlled by surface winds. Two new models for ocean surface wind speed retrieval from C-band SAR data have been developed and validated based on a large body of statistics on buoy observations collocated and coincided with RADARSAT-1 and -2 ScanSAR images. The proposed models without wind direction input demonstrated a better accuracy than conventionally used algorithms. As a combination of the developed methods we designed a wind speed-ice motion product which can be a useful tool for studying sea ice dynamics processes in the marginal ice zone. To effectively asses the thermodynamic properties of sea ice advanced tools for modeling electromagnetic (EM) wave scattering from rough natural surfaces are required. In this dissertation we present a new analytical formulation for EM wave scattering from rough boundaries interfacing inhomogeneous media based on the first-order approximation of the small perturbation method. Available solutions in the literature represent special cases of our general solution. The developed scattering theory was applied to experimental data collected at three stations (with different snow thicknesses) in the Beaufort Sea from the research icebreaker Amundsen during the Circumpolar Flaw Lead system study. Good agreement between the model and experimental data were observed for all three case studies. Both model and experimental radar backscatter coefficients were considerably higher for thin snow cover (4 cm) compared to the thick snow cover case (16 cm). Our findings suggest that, winter snow thickness retrieval may be possible from radar observations under particular scattering conditions.

Page generated in 0.219 seconds