Spelling suggestions: "subject:"oceanic turbulence"" "subject:"oceanica turbulence""
1 |
Underwater wireless optical communication system under reciprocal turbulenceGuo, Yujian 11 1900 (has links)
Underwater communication systems are in high demanded for subaquatic environment activities as the sea is an enormous and mostly unexplored place. The ten-meter long and few giga-bit per second range optical communication technique is feasible and has bright future compared to the mature but low data rate (few kilobits per second) acoustic technology and short distance (several meters) radio-frequency signaling schemes. The underwater wireless optical communication (UWOC) technique takes advantage of wide bandwidth, low attenuation effect in the visible range for multiple applications such as seafloor and offshore exploration, oil pipe control and maintenance, and pipeline leak detection. Nowadays, visible light-emitting diode (LED)-based and laser diode (LD)-based UWOC system are attractive and much related research is being conducted in the field.
However, the major challenges of developing UWOC systems are the attenuation, scattering and turbulence effects of the underwater environment. The temperature gradient, salinity gradient, and bubbles make underwater optical channel predictable challenging and degrade the optical beam propagating distance and quality. Most studies focus on the statistical distribution of intensity fluctuations in underwater wireless optical channels with random temperature and salinity variations as well as the presence of air bubbles.
In this thesis, we experimentally investigate the reciprocity nature of underwater turbulence caused by the turbidity, air bubbles, temperature variations, and salinity. Bit error rate measurement and statistical data analysis reveal the high reciprocal nature of turbulence that can be induced by the presence of bubbles, temperature, and salinity. The mitigation strategies for the different turbulence scenarios are discussed.
|
2 |
Wavelength Dependence of Underwater Turbulence Characterized Using Laser-Based White LightAlkhazragi, Omar 04 1900 (has links)
The means of communication in oceanic environments is currently dominated by sonar. Although it is reliable for long-distance transmission, the vision of internet of underwater things (IoUT) requires an alternate means for high-data-rate transmission. It is also envisaged that a networked underwater and above-water objects, such as sensor nodes, and autonomous underwater vehicles will benefit seafloor exploration. The use of laser-based optical communication is poised to realize this dream while working hand-in-hand with acoustic and radio-frequency technologies from the littoral zone to deep blue sea. While blue and green lasers are typically utilized depending on the optical properties of the water, laser-based white light is attractive in a number of aspects. In this thesis, we proposed and realized the use of white light to model the channel and to provide the immediate decision for the preferred system configuration, which is critical for developing reliable communication links, particularly, in the presence of turbulence, which makes the alignment of underwater wireless optical communication (UWOC) links challenging. Temperature and salinity changes are among factors that change the refraction index, giving rise to beam wander. This thesis explores the dependence of underwater turbulence on the wavelength.
After comparing the performance of red, green, and blue lasers, an ultra-fast comprehensive method that utilizes a white-light source that can produce a wide range of wavelengths is implemented. Experimental results show an 80%-decrease in the scintillation index as the wavelength is increased from 480 to 680 nm in weak turbulence caused by a 0.02-℃/cm temperature gradient with a 40-ppt salt concentration, which emulates conditions found in the Red Sea. The effect of turbulence on the bit error ratio (BER) is also investigated experimentally. Temperature gradients increased the BER especially for shorter wavelengths. The results along long-transmission distances were verified using Monte Carlo simulations.
The correlation matrix between wavelengths was studied, which is important for designing multiple-input multiple-output systems. The results obtained show that as the difference in the wavelengths increases, the correlation decreases.
Based on the interplay among scintillations, scattering, absorption, and the correlation between different wavelengths, it is possible to design a more reliable UWOC link.
|
3 |
Underwater Wireless Optical Communications Systems: from System-Level Demonstrations to Channel ModelingOubei, Hassan M. 06 1900 (has links)
Approximately, two-thirds of earth's surface is covered by water. There is a growing interest from the military and commercial communities in having, an efficient, secure and high bandwidth underwater wireless communication (UWC) system for tactical underwater applications such as oceanography studies and offshore oil exploration. The existing acoustic and radio frequency (RF) technologies are severely limited in bandwidth because of the strong frequency dependent attenuation of sound in seawater and the high conductivity of seawater at radio frequencies, respectively. Recently, underwater wireless optical communication (UWOC) has been proposed as the best alternative or complementary solution to meet this challenge. Taking advantage of the low absorption window of seawater in blue-green (400-550 nm) regime of the electromagnetic spectrum, UWOC is expected to establish secure, efficient and high data rate communication links over short and moderate distances (< 100 m) for versatile applications such as underwater oil pipe inspection, remotely operated vehicle (ROV) and sensor networks. UWOC uses the latest gallium nitrite (GaN) visible light-emitting diode (LED) and laser diode (LD) transmitters. Although some research on LED lased UWOC is being conducted, both the military and academic
5
research communities are favoring the use of laser beams, which potentially could enhance the available bandwidth by up to three orders of magnitude.
However, the underwater wireless channel is optically very challenging and difficult to predict. The propagation of laser beams in seawater is significantly affected by the harsh marine environments and suffers from severe attenuation which is a combined effect of absorption and scattering, optical turbulence, and multipath effects at high transmission rates. These limitations distort the intensity and phase structure of the optical beam leading to a decrease in signal-to-noise ratio (SNR) which ultimately degrades the performance of UWOC links by increasing the probability of error.
In this dissertation, we seek to experimentally demonstrate the feasibility of short range (≤ 20 m) UWOC systems over various underwater channel water types using different modulation schemes as well as to model and describe the statistical properties of turbulence-induced fading in underwater wireless optical channels using laser beam intensity fluctuations measurements.
|
Page generated in 0.0587 seconds