• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of Relative Response Factors in Solid-Phase Micro Extraction GC/MS for the Determination of Polycyclic Aromatic Hydrocarbons in Water

Schebywolok, Tomi 13 July 2018 (has links)
Solid-phase microextraction (SPME) coupled with gas chromatography/mass spectrometry (GC/MS) is routinely used to analyze polycyclic aromatic hydrocarbons (PAHs) in water. A common SPME-GC/MS approach quantifies target analytes using isotopically labeled standards (IISs); one IIS is needed for each target analyte. This approach is challenging, even prohibitive since IISs are often expensive; moreover, they are generally not available for each analyte of interest. This study developed a novel SPME-GC/MS approach for the quantification of PAHs in water. The new method, which employs only a small number of IISs, uses relative response factor (RRF) (i.e., analyte corresponding to IIS) to quantify PAHs in water. Possible matrix dependency of RRFs values was examined using water that was modified concerning different physical-chemical characteristics (i.e., ionic strength, pH, suspended solids, humic acid, and biological organic carbon represented by hemoglobin). The results revealed that RRFs are not noticeably affected by changing ionic strength and pH; the other three parameters did affect the RRFs. However, the results also showed that the effect is minimal when the solution is dilute (i.e., low concentrations of suspended solids, humic acid or hemoglobin). Relatively stable RRFs for dilute water solutions indicates that this approach can be used for routine quantification of water that does not contain prohibitive amounts of suspended solids, humic acid, and biological organic matter. The developed method was employed to quantify trace levels of PAHs in three different types of water, namely river water, well water, and bottled water. PAH levels in every kind of water were less than 100 ng/L level (i.e., 0.1 ppb). Analyses of spiked water samples containing 2 ng PAHs revealed correlations between calculated RRFs and the physical-chemical properties of the PAHs investigated (i.e., vapor pressure, boiling point, octanol/water partition coefficient, octanol/air partition coefficient, GC retention time). This implies that RRFs for PAHs not examined in this study can be predicted. Overall, the results presented herein constitute a meaningful contribution to the development of SPME-GC/MS methods for quantitative analysis of PAHs and other chemicals in dilute aqueous solutions. Moreover, the development of methods that alleviate the need for IISs corresponding to each target analyte.

Page generated in 0.0894 seconds