• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sorption Behavior of an Aliphatic Series of Aldehydes in the Presence of Poly(ethylene terephthalate) Blends Containing Aldehyde Scavenging Agents

Suloff, Eric Charles 06 December 2002 (has links)
The quality of many beverages and food products is compromised by the presence of low molecular weight aldehydes. Aldehydes are commonly formed during storage by the oxidation of lipids or are introduced as migrants from polymeric packaging material. The objective of this project was to evaluate the effectiveness of three aldehyde scavenging agents, blended into poly(ethylene terephthalate) (PET) films, in removing an aliphatic series of aldehydes from an acidified aqueous model solution (pH 3.6) during storage. Aldehyde concentration in solution was determined by an improved high performance liquid chromatography method involving the formation of aldehyde-hydrazine complexes by 2,4-dinitrophenylhydrazine. Storage of 25 μM mixtures of acetaldehyde, propionaldehyde, butyraldehyde, valeraldehyde, and caproaldehyde in contact with PET films blended with 5% poly(m-xylylene adipamide) (nylon MXD6), D-sorbitol, or alpha-cyclodextrin reduced the concentration of each aldehyde in solution by 21 to 90% after 14 days of exposure. D-sorbitol and alpha-cyclodextrin aldehyde scavenging PET films were the most effective treatments for the reduction of aldehydes from solution showing similar average reductions for the five aldehyde species of 11.4 and 13.8 μM, respectively. PET films blended with nylon MXD6 were less effective in removing aldehydes from solution showing an average reduction of 8.4 μM for the five aldehyde species. However, nylon MXD6 proved to the most efficient aldehyde scavenging agent tested. D-sorbitol and alpha-cyclodextrin blends include 45 and 17 times more aldehyde scavenging sites then nylon MXD6 blends, but only showed 26 and 39% improvements in aldehyde scavenging ability when compared to nylon MXD6 blends. Aldehyde scavenging films demonstrated selective scalping preferring smaller molecular weight aldehydes, such as acetaldehyde, propionaldehyde, and butyraldehyde, more than larger aldehydes, valeraldehyde and caproaldehyde. Partition coefficients for smaller aldehydes were 3 to 6 times greater for aldehyde scavenging films then control film. / Ph. D.
2

Efficacy of Odor Scavengers in Reducing Odor Compounds in Water, Milk, and Soymilk

Norton, Jenny Lynn 14 October 2003 (has links)
Odor detection thresholds of hexanal, 2-heptenal, 2-pentanone, and 2,4-nonadienal were determined in spring water, high temperature short time (HTST) 2% fat milk, and extended shelf life soymilk. The efficacy of odor scavenger's beta-cyclodextrin, D-sorbitol, and nylon 6 in removing these odors was also determined. The odor thresholds of the different odor and media combinations were as follows: hexanal in spring water, milk, and soymilk were 585, 339, and 536 ppb respectively; 2-heptenal in spring water, milk, and soymilk were 2,092, 2,322, and 3,184 ppb respectively; 2-pentanone in spring water, milk and soymilk were 24,925, 29,255 and 33,271 ppb respectively; and 2,4-nonadienal in spring water, milk, and soymilk were 164, 326, and 243 ppb respectively. These amounts reference the initial spiked concentration that was added directly to the media. Both hexanal and 2,4-nonadienal had lower thresholds than 2-heptenal and 2-pentanone in all of the media. The odor detection thresholds of 2-heptenal, 2-pentanone, and 2,4-nonadienal did show a significant difference between soymilk and water, but not for milk. The efficacy of the odor scavengers were determined by use of solid phase micro-extraction gas chromatography (SPME-GC) and sensory evaluation. Hexanal, 2-heptenal, 2-pentanone, and 2,4-nonadienal were spiked at 1,000, 3,000, 30,000, and 300 ppb respectively in all three media. Beta-cyclodextrin, D-sorbitol, and nylon 6 were added at a level of 0.1% w/v and 1.0% w/v. In all of the media, beta-cyclodextrin was found to significantly reduce hexanal, 2-pentanone, 2-heptenal, and 2,4-nonadienal at both 0.1% w/v and 1.0% w/v. Nylon 6 was not found beneficial. / Master of Science

Page generated in 0.024 seconds