• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification and Localization of Quantitative Trait Loci (QTL) and Genes Associated with Oil Concentration in Soybean [Glycine max (L.) Merrill] Seed

Eskandari, Mehrzad 13 December 2012 (has links)
Soybean [Glycine max (L.) Merr.] seed is a major source of edible oil in the world and the main renewable raw material for biodiesel production in North America. Oil, which on average accounts for 20% of the soybean seed weight, is a complex quantitative trait controlled by many genes with mostly minor effects and influenced by environmental conditions. Because of its quantitative nature, the seed oil concentration may have an indirect effect on other economically important and agronomic traits such as seed yield and protein concentration. Increasing the oil concentration in soybean has been given more attention in recent years due to increasing demand for both edible oil and feedstock. To achieve this objective, it is important to understand the genetic control of the oil accumulation and its relationship with other traits. The main objectives of this thesis were to identify quantitative trait loci (QTL) and genes involved in oil biosynthesis in soybean. Two recombinant inbred line (RIL) populations were developed from crosses between moderately high oil soybean cultivars with high seed yield and protein concentration. In a population of 203 F3:6 RILs from a cross of ‘OAC Wallace’ and ‘OAC Glencoe’, a total of 11 genomic regions located on nine different chromosomes were identified as associated with oil concentration using multiple QTL mapping (MQM) and single-factor ANOVA. Among the 11 oil-associated QTL, four QTL were also validated in a population of 211 F3:5 RILs from a cross of ‘RCAT Angora’ and ‘OAC Wallace’. There were six oil QTL identified in this study that were co-localized with seed protein QTL and four for seed yield QTL. The oil-beneficial allele of the QTL tagged by marker Sat_020, on Chromosome 9, was positively associated with seed protein concentration. The oil-enhancing alleles at markers Satt001 and GmDGAT2B were positively correlated with seed yield. In this study, three sequence mutations were also discovered in either the coding or non-coding regions of three DGAT soybean genes (GmDGAT2B, GmDGAT2C, and GmDGAT1B) between ‘OAC Wallace’ and ‘OAC Glencoe’ that showed significant effects on some of the traits evaluated. GmDGAT2B showed significant association with seed oil and yield across different environments. The oil-favorable allele of the gene GmDGAT2B from ‘OAC Glencoe’ was also positively correlated with seed yield. GmDGAT2C was associated with seed yield, whereas GmDGAT1B showed significant effects on seed yield and protein concentration. However, neither of these two genes showed any association with seed oil. The yield-enhancing allele of GmDGAT1B showed negative association with protein concentration. The identification of oil QTL that were either positively associated with seed yield and protein or neutral to both traits and the development of new gene-based markers will facilitate marker-assisted breeding to develop high oil soybean cultivars with high yield and minimal effect on protein concentration. / Generous funding to conduct this research was provided by the Alternative Renewable Fuels II Program of the Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) and by the Grain Farmers of Ontario.
2

Inheritance of Oil Production and Quality Factors in Peant (Arachis hypogaea L.)

Wilson, Jeffrey Norman 16 December 2013 (has links)
Peanut (Arachis hypogaea L.) has the potential to become a major source of biodiesel but for market viability, peanut oil yields must increase and specific quality requirements must be met. Oil yield in peanut is influenced by many components, including oil concentration, seed mass, and mean oil produced per seed. All of these traits can be improved through selection as long as there is sufficient genetic variation. Thus, elucidating the genetics of oil concentration, seed mass, and mean oil produced per seed in peanut is essential to advancing the development of genotypes with high oil yields. Additive genetic effects were predominant for oil concentration in two generation means analyses involving a proprietary high oil breeding line and additive genetic variance was highly significant in a complete four-parent diallel analysis. Genetic variance for weight of 50 sound mature kernels (50 SMK) and mean oil produced per SMK (OPS) was additive the diallel analysis. Narrow-sense heritability estimates were high for oil concentration in both the diallel and generation means analyses. Narrow-sense heritability was also high for 50 SMK, but was low for OPS. The low OPS heritability estimate was caused by the negative correlation between oil concentration and seed mass. Consequently, oil concentration and seed mass can be improved through early-generation selection, but large segregating populations from high oil crosses will be needed to identify progeny with elevated oil concentrations that maintain acceptable seed sizes. Increasing the ratio of oleic to linoleic acid (O/L) in peanut oil and reducing the long chain saturated fatty acid concentration (which includes arachidic, behenic, and lignoceric acids) produces high quality, stable methyl esters for biodiesel. Therefore, elucidating the inheritance of these factors and their relationships in peanut populations segregating for high oil is critical. The results from generation means analysis confirm that the high-oleic trait is under simple genetic control and can be manipulated through selection. Oil concentration was negatively correlated with oleic acid concentration in the F2 generations of both crosses and positively correlated with arachidic acid in most of the segregating generations that were evaluated. Therefore, developing a peanut genotype high in oil and oleic acid concentration that has reduced long chain saturates will require the evaluation of large numbers of segregating progeny.

Page generated in 0.1348 seconds