• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Double Dissociation of Associative and Non-associative Learning following Conditioning to a Single Odorant in the Caenorhabditis elegans AWC Olfactory Neruons

Pereira, Schreiber 19 December 2011 (has links)
Learning can be either non-associative or associative, though the molecular mechanisms underlying both remain enigmatic. The nematode Caenorhabditis elegans can adapt to both the AWC sensed odorants benzaldehyde (Bnz) and isoamyl alcohol (IsoA) and reciprocally cross-adapt. Surprisingly, however, these four adaptation permutations actually represent two distinct forms of learning: non-associative habituation and associative learning by pairing with starvation. Conditioning to the single odorant IsoA leads to both associative and non-associative memory traces, which can be preferentially accessed by choice of a Bnz or IsoA retrieval stimulus, respectively. Furthermore, we show that the molecular mechanisms underlying each form of memory can be genetically double dissociated, with insulin signalling and egl-4 being required for associative learning and osm-9 and arr-1 being essential for IsoA olfactory habituation. This represents the first demonstration where the form of learning displayed after conditioning to a single stimulus is a function of the retrieval stimulus employed.
2

Double Dissociation of Associative and Non-associative Learning following Conditioning to a Single Odorant in the Caenorhabditis elegans AWC Olfactory Neruons

Pereira, Schreiber 19 December 2011 (has links)
Learning can be either non-associative or associative, though the molecular mechanisms underlying both remain enigmatic. The nematode Caenorhabditis elegans can adapt to both the AWC sensed odorants benzaldehyde (Bnz) and isoamyl alcohol (IsoA) and reciprocally cross-adapt. Surprisingly, however, these four adaptation permutations actually represent two distinct forms of learning: non-associative habituation and associative learning by pairing with starvation. Conditioning to the single odorant IsoA leads to both associative and non-associative memory traces, which can be preferentially accessed by choice of a Bnz or IsoA retrieval stimulus, respectively. Furthermore, we show that the molecular mechanisms underlying each form of memory can be genetically double dissociated, with insulin signalling and egl-4 being required for associative learning and osm-9 and arr-1 being essential for IsoA olfactory habituation. This represents the first demonstration where the form of learning displayed after conditioning to a single stimulus is a function of the retrieval stimulus employed.

Page generated in 0.0887 seconds