• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CHARACTERIZATION OF THE BACULOVIRUS LATE EXPRESSION FACTOR-3 OLIGOMERIZATION INTERACTION DOMAINS USING PROTEIN COMPLEMENTATION ASSAY

Adetola, Gbolagade 27 May 2011 (has links)
Late expression factor 3 is one of the six AcMNPV genes essential for DNA replication identified through transient replication assays. LEF-3 is a single stranded DNA binding protein responsible for the transportation of the viral helicase (P143) into the nucleus of the infected cell. In this study, a protein complementation-based assay was adapted to identify the region(s) of LEF-3 that is (are) involved in LEF-3-LEF-3 protein interactions. The full-length LEF-3, or various truncated LEF-3 regions were fused with Venus1 (N- terminus portions of full length Venus, a modified yellow fluorescence protein) or Venus2 (C- terminus). Venus1 and Venus2 fragments generated a functional fluorescent Venus protein when the two fragments were brought together by protein-protein interaction of the fused LEF-3 constructs. Fluorescence generated by coexpression of full-length LEF-3 fusion proteins confirmed that LEF-3 exists as homo-oligomer. Interaction between the full-length and the N- terminal (aa 1-189) or C- terminal regions (aa 190-385), and between the various truncated LEF-3 regions suggested the complexity of LEF-3 oligomeric structure. LEF-3 constructs deleted for NLS function revealed cytoplasmic fluorescence, suggesting that LEF-3-LEF-3 interactions occur in the absence of DNA or nuclear proteins. Because LEF-3 is essential for nuclear transporting the viral helicase (P143), the ability of LEF-3 to interact with another viral protein was investigated. P47, a sub-unit of the viral RNA polymerase was chosen because it is cytoplasmic when expressed on its own. The interaction between LEF-3 and P47 produced complete nuclear localized fluorescent signals. Overall, the results suggest that there are multiple regions of LEF-3 that are capable of closely interacting, and that multiple domains are likely involved in the oligomerization of full-length LEF-3. The interaction of LEF-3 with P47 suggests that P47 may be another LEF-3 cargo protein. / Thesis (Master, Microbiology & Immunology) -- Queen's University, 2011-05-27 15:02:53.983

Page generated in 0.1167 seconds