• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Pressure Distribution Of Rotating Cylinders Using An Onboard Wireless Data Acquisition System

Eller, Nathan 01 June 2024 (has links) (PDF)
This thesis presents a novel, cost-effective method for mapping the pressure distribution on a rotating cylinder in cross flow, a phenomenon central to the Magnus effect. Utilizing commercial-off-the-shelf (COTS) micro-electromechanical system (MEMS) pressure sensors, a high-resolution data acquisition system was developed and integrated into a rotating cylinder model. Compared to traditional approaches, such as slip rings or one-off designs, this method proved significantly cheaper and faster while achieving comparable or superior resolution. The experimental setup, including a modified continuous rotation technique and adaptable model design, facilitated rapid testing across a broad range of Reynolds numbers and reduced frequencies, exceeding the scope of existing literature. This provided an unprecedentedly detailed view of pressure distributions under both steady and unsteady flow conditions. The validated experimental methodology, applicable to arbitrary bluff body shapes and attitudes, has the potential to significantly accelerate research into unsteady aerodynamics. Moreover, the low-cost, adaptable nature of the setup allows its integration into educational settings, providing students with hands-on experience in experimental fluid mechanics and data acquisition.

Page generated in 0.0659 seconds