• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The oncogenic properties of Amot80 in mammary epithelia

Ranahan, William P. 12 March 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / While breast cancer is the second most commonly diagnosed cancer worldwide, its causes and natural history are not well defined. The female mammary organ is unique in that it does not reach full maturity until the lactation cycle following pregnancy. This cycle entails extensive growth and reorganization of the primitive epithelial ductal network. Following lactation, these same epithelial cells undergo an equally extensive program of apoptosis and involution. The mammary gland's sensitivity to pro-growth and pro-apoptotic signals may partly explain its proclivity to develop cancers. For epithelial cells to become transformed they must lose intracellular organization known as polarity as differentiated epithelial tissues are refractory to aberrant growth. One essential component of epithelial to mesenchymal transition is the intrinsic capacity of cells to repurpose polarity constituents to promote growth. Recently, a novel mechanism of organ size control has been shown to repurpose the apical junctional associated protein Yap into the nucleus where it functions as a transcriptional coactivator promoting growth and dedifferentiation. The focus of my work has been on a family of adaptor proteins termed Amots that have been shown to scaffold Yap and inhibit growth signaling. Specifically, I have shown that the 80KDa form of Amot, termed Amot80, acts as a dominant negative to the other Amot proteins to promote cell growth while reducing cell differentiation. Amot80 was found to promote the prolonged activation of MAPK signaling. Further, Amot80 expression was also found to enhance the transcriptional activity of Yap. This effect likely underlies the ability of Amot80 to drive disorganized overgrowth of MCF10A cells grown in Matrigel̈™. Overall, these data suggest a mechanism whereby the balance of Amot proteins controls the equilibrium between growth and differentiation within mammary epithelial tissues.
2

The inhibition of mammary epithelial cell growth by the long isoform of Angiomotin

Adler, Jacob J. 07 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Mammary ductal epithelial cell growth is controlled by microenvironmental signals in serum under both normal physiological settings and during breast cancer progression. Importantly, the effects of several of these microenvironmental signals are mediated by the activities of the tumor suppressor protein kinases of the Hippo pathway. Canonically, Hippo protein kinases inhibit cellular growth through the phosphorylation and inactivation of the oncogenic transcriptional co-activator Yes-Associated Protein (YAP). This study defines an alternative mechanism whereby Hippo protein kinases induce growth arrest via the phosphorylation of the long isoform of Angiomotin (Amot130). Specifically, serum starvation is found to activate the Hippo protein kinase, Large Tumor Suppressor (LATS), which phosphorylates the adapter protein Amot130 at serine-175. Importantly, wild-type Amot130 potently inhibits mammary epithelial cell growth, unlike the Amot130 serine-175 to alanine mutant, which cannot be phosphorylated at this residue. The growth-arrested phenotype of Amot130 is likely a result of its mechanistic response to LATS signaling. Specifically, LATS activity promotes the association of Amot130 with the ubiquitin ligase Atrophin-1 Interacting Protein 4 (AIP4). As a consequence, the Amot130-AIP4 complex amplifies LATS tumor suppressive signaling by stabilizing LATS protein steady state levels via preventing AIP4-targeted degradation of LATS. Additionally, AIP4 binding to Amot130 leads to the ubiquitination and stabilization of Amot130. In turn, the Amot130-AIP4 complex signals the ubiquitination and degradation of YAP. This inhibition of YAP activity by Amot130 requires both AIP4 and the ability of Amot130 to be phosphorylated by LATS. Together, these findings significantly modify the current view that the phosphorylation of YAP by Hippo protein kinases is sufficient for YAP inhibition and cellular growth arrest. Based upon these results, the inhibition of cellular growth in the absence of serum more accurately involves the stabilization of Amot130 and LATS, which together inhibit YAP activity and mammary epithelial cell growth.

Page generated in 0.0658 seconds