• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 14
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 80
  • 10
  • 9
  • 9
  • 9
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Effects of density and host plant type on fecundity and survival of Delia radicum (Bouché), D. Antiqua (Meigen) and D. Platura (Meigen) (Diptera: Anthomyiidae)

Noronha, Christine M. (Christine Mary) January 1992 (has links)
The effects of intraspecific and interspecific competition, host plant, and prior host plant experience on fecundity, rate of oviposition and mortality of adults and larval survival of Delia radicum Bouche (Cabbage Maggot (CM)), D. antiqua Meigen (Onion Maggot (OM)), and D. platura Meigen (Seed Corn Maggot (SCM)), were studied on cabbage, onion and bean plants. / An optimum density for maximum fecundity per female was observed when the four experimental densities were compared. This optimum density was higher on host than on non-host plants. CM females were host specific and did not oviposit on non-host plants. Rates of oviposition and mortality over a 30-day period were calculated for each density. The rate of oviposition was slower at higher densities on host plants for CM, OM and SCM. The rate of mortality increased at the highest density for CM (cabbage), OM (bean) and SCM (cabbage), but remained unaffected for OM on onion and cabbage and for SCM on onion and bean, when densities were compared. For OM, a delay in the rate of oviposition and mortality on cabbage (non-host plant) when compared with onion (host plant), suggests that cabbage was not as readily accepted as an oviposition site. Interspecific competition experiments at six density ratio's of SCM:OM indicated increased fecundity, or an increase in the rate of oviposition for OM, at the lower densities when single and mixed species were compared. For SCM no effects on fecundity were recorded, but the rate of oviposition was slower and rate of mortality faster at the lowest density in the presence of OM. Similar studies with SCM and CM showed no such effects of competition. / Host plant exposure of SCM females during the pre-oviposition period resulted in a delay in initial acceptance of subsequent host plants as oviposition sites. This happened only when females were exposed to a secondary host during the pre-oviposition period. Once oviposition began, host discrimination ceased and a switch in oviposition sites to the preferred host did not alter the rate of oviposition. In CM, the rate of larval development increased at density 6 (optimum density). Above this density a decrease in the rate of development and a significant reduction in pupal weight was observed. Time required for fly emergence was not affected by increasing larval densities.
72

Regulation of sulfur assimilation in onion (Allium cepa L.) : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plant Physiology at Massey University, Palmerston North, New Zealand

Thomas, Ludivine A January 2008 (has links)
Onion (Allium cepa L.) is an example of a species that accumulates very high levels of reduced sulfur (S)-containing compounds, particularly in the bulb as alk(en)yl-L-cysteine-sulfoxides (ACSOs) and it is these compounds, or their derivatives, that confers the distinct odour and pungent flavour. In common with higher plants, the S assimilation pathway in onion begins with the activation of uptaken sulfate (SO4 2-) to 5'-adenylylsulfate (APS), a reaction catalysed by ATP sulfurylase (ATPS; EC 2.7.7.4). Then, APS is reduced to sulfide (S2-) in a two-step process catalysed by the enzymes APS reductase (APSR; EC 1.8.4.9) and sulfite reductase (SiR; EC 1.8.7.1). To complete the reductive assimilation pathway, S2- is incorporated into the amino acid skeleton of O-acetylserine (OAS) to form cysteine, and this reaction is catalyzed by OAS (thiol)-lyase (OAS-TL; EC 4.2.99.8). While the regulation of the pathway is quite well defined in the plant model Arabidopsis, much less is known about its regulation in S accumulating species such as onion. The primary aim of this thesis, therefore, was to characterise the enzymes of the S assimilation pathway in onion, with a particular emphasis on ATPS. As part of this charaterisation two genotypes of onion were compared. These comprised a mild genotype, 'Texas Grano 438' (TG) with a lower level of S-containing compounds in the bulb tissues, and 'W202A' (W), a cultivar with a higher level of S containing compounds in the bulb tissues. As well, comparisons were made between seedlings (typically harvested at 7 weeks) and plants at a designated mature stage (at bulbing; typically after 4 months growth), and for plants grown in S-sufficient (S+) media or S-deficicnt (S-) media, as appropriate. In terms of plant growth, S-deprivation generally had a negative influence for both genotypes, with significant reductions in total biomass (measured as fresh weight) for TG at both the seedlings and mature stages. ATPS activity and accumulation were shown to be present in all tissues examined (leaf, root, bulb) as well as the chloroplasts, with highest activity measured in the roots, particularly in seedlings. ATPS activity and accumulation were also compared between the two genotypes (TG and W) with ATPS activity and accumulation higher in W, particularly at the seedling stage. In terms of the influence of S supply, in general higher ATPS activity was measured in chloroplast, leaf and root extracts from plants of both genotypes grown in the S- media, at the seedling stage. In roots of mature plants of both genotypes, a significant increase in activity was measured in response to S-deprivation, while in chloroplasts isolated from mature plants of both genotypes, highest activity was measure in those grown in the S+ media. Finally diurnal variations were observed in chloroplast, leaf and root extracts of both genotypes with a general trend of an increase in ATPS activity and accumulation a few hours after illumination and upon the onset of the dark period. Although a single gene coding for ATPS is presumed to be present in onion, the enzyme was characterized as two electrophoretic forms using 1D-PAGE during western analyses following fractionation of chloroplasts by anion exchange chromatography and also as an alignment of spots using 2D-PAGE. As protease inhibitors were routinely included in the extraction buffers, these forms suggest the occurrence of ATPS isoforms that may arise as a consequence of post-translational modifications. The regulation of ATPS by one mechanism of post-translational modification, phosphorylation, was therefore investigated using several techniques including the detection of a shift in molecular mass, a change in enzyme activity or pI (as determined by 2D-PAGE) and the capability to bind to 14-3-3 proteins using affinity chromatography. Following treatments of chloroplast extracts to promote either the phosphorylation (P+) or the dephosphorylation (P-) of proteins, no molecular mass change or change in activity was observed. However, after fractionation by 2D-PAGE, differences in the spot alignment of ATPS were visualized, suggesting that ATPS is a phosphoprotein. The enzyme was detected in pull-downs after affinity chromatography, suggesting that ATPS may also interact with 14-3-3 proteins (although this needs to be confirmed unequivocally). A model is advanced, therefore, in which upon phosphorylation, no variation in ATPS activity occurs but a change in the surface charged and possibly a change in conformation of the protein does occur to make the enzyme competent to interact with 14-3-3 proteins.
73

Estudio de prefactibilidad para la instalación de una planta procesadora de cebolla (allium cepa) deshidratada en polvo

Raffo-Escuza, Gianfranco, Schultz-Rubio, Gert January 2016 (has links)
En el presente proyecto se ha analizado la factibilidad de la instalación de una planta procesadora de cebolla deshidratada en polvo en el Perú, determinando su viabilidad de mercado, tecnológica, económica y financiera. A partir del estudio de mercado, se determinó que el mercado meta será Estados Unidos pues es el país con la mayor demanda global de cebolla deshidratada en polvo, en el cual ofreciendo un producto cuya calidad es superior a un precio competitivo, se conseguirá obtener una demanda de 196,58 TM el primer año y crecerá hasta 340,47 TM en el quinto. / The present investigation has analyzed the feasibility of the installation of a dehydrated onion powder plant in Peru, by determining its market, technological, economic and financial viability. Based on the results of the market research, it was determined that the target market will be United States as it is the country with the highest demand of dehydrated onion powder. By offering a product with a high quality and competitive price the present project will reach a demand of 196,58 TM in the first year and will grow up to 340,47 TM in the fifth. / Trabajo de investigación
74

Effects of density and host plant type on fecundity and survival of Delia radicum (Bouché), D. Antiqua (Meigen) and D. Platura (Meigen) (Diptera: Anthomyiidae)

Noronha, Christine M. (Christine Mary) January 1992 (has links)
No description available.
75

A pectin histochemical study of the host pathogen relationship between Pyrenochaeta terrestris and Allium cepa

Cobia, LeRoy Richard 01 August 1971 (has links)
The involvement of pectin and pectinases in the host pathogen interaction of P. terrestris and Allium cepa were investigated by use of pectin histochemical stains at the electron microscope level. Several different pectin histochemical stains were used, but only two (the hydroxylamine reaction, and the pectin stain developed in this study) gave reliable results. It was observed that by the time the fungus has reached the host cell wall pectinesterase and endoplygalacturonase have fully removed the pectin from the host cell wall. When this has occurred, cellulases are released which continue to degrade the host cell wall. Electron transparent areas appeared where there were no COOH groups.
76

The Synergistic Interaction between White Rot Fungi and Fenton Oxidation: Practical Implication for Bioprocess Design

Van der Made, Julian John Alexander January 2024 (has links)
The metabolism of white-rot fungi has many proposed biotechnological applications. Their unique capability to depolymerize and catabolize lignin, the most recalcitrant component of lignocellulosic biomass, could be instrumental to the sustainable production of fuels, chemical, and materials from waste biomass feedstocks. The non-specific, oxidative nature of this lignin-degrading metabolism of white-rot fungi renders them capable of degrading a wide range of complex refractory organic compounds beyond lignin, including emerging micropollutants such as pharmaceuticals and pesticides which current wastewater treatment processes were not designed to remove. However, harnessing these metabolic capabilities into engineered bioprocesses has proven to be challenging. Common bioreactor design strategies were developed for traditionally-used unicellular bacteria and yeasts and are not necessarily appropriate for the more complex, filamentous white-rot fungi. Due to a lack of specific engineering strategies and other knowledge gaps, the realization of white-rot fungal bioprocesses has been hampered by low process efficiencies and operational challenges. This dissertation aims to expand the engineering toolbox for harnessing the metabolism of white-rot fungi in bioprocesses. Specifically, it proposes the addition of Fenton chemistry as an avenue to unlock the biotechnological potential of white-rot fungi. The production of hydroxyl radicals through the Fenton reaction is generally understood to be part of the lignin-degrading machinery of white-rot fungi and the addition of Fenton chemistry has been shown to synergistically enhance lignin degradation by white-rot fungi. Overall, the research presented here aims to demonstrate that incorporating Fenton chemistry into white-rot fungal bioprocesses not only synergistically increases lignin degradation efficiency, but also offers a potential solution for the operational challenges that have prevented the implementation of white-rot fungal bioprocesses. This dissertation was guided by five objectives aimed at illustrating the utility of coupling Fenton chemistry and white-rot fungi in engineered bioprocesses. The first objective was to demonstrate, optimize, and uncover the underlying mechanisms driving the synergistic degradation of lignin by white-rot fungi and Fenton chemistry. Through this assessment, it was found that lignin degradation increased synergistically from 58.8% to 80.2% in the presence of Fenton chemistry at the optimum concentration. This work also showed that Fe(II)/Fe(III) cycling and the induction of auxiliary ligninolytic pathways mediate this synergistic interaction. The second objective was to elucidate how Fenton chemistry influences the regulating mechanisms of ligninolytic activity in white-rot fungi, specifically C:N ratio. This showed that C:N ratio significantly influences lignin degradation in the absence of Fenton, but that this effect is blunted in the presence of Fenton. The third objective was to investigate how Fenton chemistry modulates the relationship between the concentration of fungal biomass and the extent of lignin. In the absence of Fenton, fungal biomass concentration was strongly correlated to the extent of lignin degradation. While this was also the case in the presence of Fenton chemistry at very low fungal biomass concentrations, this relationship became uncoupled at sufficiently high fungal biomass concentrations. The fourth objective was to evaluate Fenton chemistry as a selective disinfectant to allow for the persistence or enrichment of white-rot fungi in non-sterile settings. The model competitor E. coli became completely inactivated within hours at the optimal concentration of Fenton reagents, whereas the white-rot fungus P. chrysosporium survived and grew. Lastly, the fifth objective was to demonstrate the long-term performance of a continuously-operated bioreactor which integrated Fenton chemistry and white-rot fungal metabolism. A rotating biological contactor (RBC) combined with a rotating cathode electro-Fenton was constructed and a kinetic model based on batch tests was successfully developed and validated. The reactors were operated for over 100 days and reached stable lignin degradation performance at ~55%. Analysis of the microbial ecology of these reactors showed the persistence of the inoculated P. chrysosporium within the biofilms, as well as the enrichment for other lignin-degrading fungi and bacteria with aromatic catabolism and iron-reduction capabilities. Overall, this research provides insight into the potential and practical implications of integrating Fenton chemistry with white-rot fungi in bioprocesses. The lignin-degrading metabolism of white-rot fungi has long been of interest for biotechnological purposes, but attempts to operationalize them have thus far been unsuccessful at scale. In order to consider scaling white-rot fungi to full-scale operations such as wastewater treatment plants, a better understanding and tighter controls on the growth, ligninolytic activity, and ecological interactions of white-rot fungi are needed. This work proposes Fenton chemistry as a synergetic actor, selective promoter and regulator of white-rot fungal biomass and their production of lignin degrading enzymes.
77

Evolution and detection of Fusarium oxysporum f. sp. cepae in onion in South Africa

Southwood, Michael J. 03 1900 (has links)
Thesis (PhDAgric (Plant Pathology))--Stellenbosch University, 2010. / ENGLISH ABSTRACT: In the Western Cape onion industry in South Africa, Fusarium oxysporum Schlechtend.:Fr. f.sp. cepae (H.N. Hans.) W.C. Snyder & H.N. Hans. (Focep) has been identified as the leading cause of harvest and storage losses. This pathogen is of world-wide importance and causes Fusarium basal rot of onions (Allium cepa), affecting all onion growth stages. No information is available on the evolution, genetic diversity, molecular detection and inoculum sources of the South African Focep population. Similar to what is the case for South Africa, limited information is available on Focep in other regions of the world. World-wide, four vegetative compatibility groups (VCGs) and two single-member VCGs (SMVs) have been identified among two Japanese and 19 Colorado (USA) isolates. This polyphyletic origin of Focep suggested by VCG analyses was confirmed through molecular analyses of isolates from a few countries. Only the mating type (MAT)1-1 idiomorph has been reported for Focep isolates from Welsh onion (Allium fistulosum). The development of sustainable management strategies of Focep is dependent on knowledge of (i) the genetic diversity and evolution of Focep, (ii) whether high throughput molecular methods can be developed for identifying the most virulent and widespread Focep genotypes and (iii) the role of seedlings and seeds as primary inoculum sources, and the Focep genotypes associated with these growth stages. Therefore, the three main aims of the current study were to investigate the aforementioned three aspects. In the first aim of the study, the genetic diversity and evolution of Focep was investigated using a collection of 79 F. oxysporum isolates from South Africa (27 Focep and 33 non-pathogenic isolates) and Colorado (19 Focep isolates). VCG analyses revealed the presence of six VCGs, four among the Colorado Focep isolates (VCGs 0421, 0422, 0423 and 0424) and two among the South African bulb-associated isolates (VCGs 0425 and 0426). VCG 0421 and VCG 0425 were the two main VCGs in Colorado and South Africa, respectively. Four SMVs and one heterokaryon selfincompatible (HSI) isolate were also identified. The polyphyletic nature of Focep in South Africa and Colorado was shown through a combined translation elongation factor 1α (EF-1α) and mitochondrial small-subunit (mtSSU) phylogeny. The phylogeny divided the Focep isolates into two main clades, of which one contained the two main VCGs (0421 and 0425), SMVs and non-pathogenic isolates. The second, ancestral clade contained the HSI isolate, VCGs 0422, 0423 and 0424, and non-pathogenic isolates. Unlike the clade containing the two main VCGs, which were highly virulent toward onion bulbs, the ancestral clade contained isolates that were mostly moderately virulent. The incongruence of the EF-1α and mtSSU datasets with an intergenic spacer (IGS) region data set, and the presence of both MAT idiomorphs within the same isolate for some isolates, suggested possible exchange of genetic material between isolates. The second aim of the study was to develop molecular methods for identifying the two main Focep VCGs (0425 and 0421), using DNA fingerprinting methods and sequence-characterized amplified region (SCAR) markers. These techniques were first developed using the F. oxysporum isolates from the first aim, and were then used to investigate the prevalence of VCG 0425 among 88 uncharacterized F. oxysporum isolates from onion bulbs in South Africa. Two random amplified polymorphic DNA primers provided two diagnostic amplicons for VCG 0425, but attempts to develop SCAR markers from these amplicons were unsuccessful. In contrast, an interretrotransposon amplified polymorphism (IRAP) fingerprinting method enabled the developed of a multiplex IR-SCAR polymerase chain reaction method that detected the VCG 0421, 0425 and SMV 4 isolates as a group. Fingerprinting and SCAR marker testing of the 88 uncharacterized F. oxysporum isolates from South Africa (65 Focep and 23 non-pathogenic) confirmed that VCG 0425 is the main VCG in South Africa associated with mature onion bulbs, since 63 of the Focep isolates had the molecular characteristics of VCG 0425. The third aim of the study was to determine whether seed and seedling transplants are inoculum sources of Focep, and whether the same genotype (VCG 0425) that dominated on mature bulbs could be detected from these sources. Focep isolates were obtained from seven of the 13 investigated onion seed lots, as well as from onion seedling transplants that were collected from all five onion nurseries in the Western Cape. Focep seedling infection more than doubled from the 6-week growth stage to the 14-week growth stage. Seed infections by Focep were low, but the seedborne nature of Focep was confirmed by showing that a green fluorescent protein labelled Focep transformant could be transmitted from infected soil to onion seed via the onion bulbs and seedstalks. It is thus clear that commercial seed and seedlings are inoculum sources of Focep. However, the Focep genotypes on seed and seedlings are different from those in mature bulbs and were not dominated by VCG 0425. Furthermore, most (≤ 60%) of the seed and seedling isolates were moderately virulent, as compared to the mostly highly virulent isolates from mature bulbs. / AFRIKAANSE OPSOMMING: In die Wes-Kaapse uiebedryf in Suid-Afrika is Fusarium oxysporum Schlechtend.:Fr. f.sp. cepae (H.N. Hans.) W.C. Snyder & H.N. Hans. (Focep) geïdentifiseer as die vernaamste oorsaak van oes- en opbergingsverliese. Hierdie patogeen is van wêreldwye belang; dit veroorsaak Fusarium-bolvrot van uie (Allium cepa) en affekteer alle plantgroeistadia. In Suid-Afrika is daar geen inligting beskikbaar oor die evolusie, genetiese diversiteit, molekulêre opsporing en inokulumbronne van die Focep-populasie nie. Soortgelyk aan wat die geval in Suid-Afrika is, is daar beperkte inligting beskikbaar oor Focep in ander wêrelddele. Wêreldwyd is daar vier vegetatiewe versoenbaarheidsgroepe (VVGe) en twee enkellid VVGe (ELVe) geïdentifiseer onder twee Japannese en 19 Colorado (VSA) isolate. Hierdie veelvuldige oorsprong van Focep wat deur VVG-analise voorgestel was, is deur die molekulêre analises van isolate uit ’n paar ander lande bevestig. Slegs die paringstipe (PT)1-1 idiomorf is vir Focep-isolate uit Walliese-tipe uie (ook bekend as ‘lenteuie’ in Suid Africa) (Allium fistulosum) berig. Die ontwikkeling van volhoubare bestuurstrategieë vir Focep steun op kennis van (i) die genetiese diversiteit en evolusie van Focep, (ii) of hoë-deurset molekulêre metodes ontwikkel kan word vir die identifisering van die mees virulente en wydverspreide Focep-genotipes en (iii) die rol van saailinge en saad as primêre inokulumbronne, en die Focep-genotipes wat met hierdie groeistadia geassosieer word. Daarom was die hoof doelstellings van hierdie studie om die bogenoemde drie aspekte te bestudeer. Om die eerste doel van die studie te bereik is die genetiese diversiteit en evolusie van Focep bestudeer deur gebruik te maak van ‘n versameling van 79 F. oxysporum-isolate uit Suid-Afrika (27 Focep en 33 nie-patogeniese isolate) en uit Colorado (19 Focep-isolate). VVG-analises het die teenwoordigheid van ses VVGe aangetoon – vier onder die Colorado Focep-isolate (VVGe 0421, 0422, 0423 en 0424) en twee onder die Suid-Afrikaanse bol-geassosieerde isolate (VVGe 0425 en 0426). VVG 0421 en VVG 0425 was die twee hoof VVGe in onderskeidelik Colorado en Suid-Afrika. Vier ELVe en een meerkernige self-onversoenbare (MSO) isolaat is ook geïdentifiseer. Die veelvuldige oorsprong van Focep in Suid-Afrika en Colorado is ook aangetoon deur ‘n gekombineerde translasie verlengings faktor 1α (VF-1α) en mitokondriale klein-subeenheid (mtKSE) filogenie. Dié filogenie het die Focepisolate in twee groepe verdeel, waarvan die een groep die twee hoof VVGe (0421 en 0425), ELVe en nie-patogeniese isolate bevat het. Die tweede, basal groepering het die MSO-isolaat, VVGe 0422, 0423 en 0424, en nie-patogeniese isolate bevat. In teenstelling met die eersgenoemde groepering wat hoogs virulente isolate van uiebolle bevat het, het die basale groepering isolate bevat wat meestal matig virulent was. Die inkongruensie van die VF-1α en mtKSE-datastelle met ‘n intergeen-gespasieerde (IGS) area datastel – asook die teenwoordigheid van beide PT-idiomorwe binne dieselfde isolaat by sommige isolate – het op ’n moontlike uitruiling van genetiese materiaal tussen isolate gedui. Die tweede doel van die studie was om molekulêre metodes te ontwikkel vir die identifisering van die twee hoof Focep VVGe (0425 en 0421) deur gebruik te maak van DNA-vingerafdrukke en nukleotied-gekarakteriseerde geamplifiseerde area (NKAA) merkers. Hierdie tegnieke is ontwikkel deur van die F. oxysporum-isolate van die eerste doelstelling gebruik te maak en is daarna gebruik om die frekwensie van VVG 0425 onder 88 ongekarakteriseerde F. oxysporum-isolate van uiebolle in Suid-Afrika te ondersoek. Twee gerandomiseerde geamplifiseerde polimorfiese DNS (RAPD) merkers het twee diagnostiese nukleotiedbasis-areas vir VVG 0425 gelewer, maar pogings om NKAA-merkers uit hierdie geamplifiseerde nukleotiedbasis-areas te onwikkel was onsuksesvol. In teenstelling hiermee het ‘n inter-retrotransposon geamplifiseerde polimorfisme (IRAP) vingerafdrukmetode die ontwikkeling van ‘n multipleks IR-NKAA polimerase kettingreaksiemetode moontlik gemaak wat die VVG 0421-, VVG 0425- en ELV 4-isolate as ’n groep aangedui het. Vingerafdruktoetsing en NKAA-merkertoetsing van die 88 ongekaraktariseerde F. oxysporum isolate van Suid-Afrika (65 Focep en 23 nie-patogenies) het bevestig dat VVG 0425 die hoof VVG in Suid-Afrika is wat met volwasse bolle geassosieer word, aangesien 63 van die Focep-isolate die molekulêre eienskappe van VVG 0425 gehad het. Die derde doel van die studie was om vas te stel of saad en saailinge inokulumbronne van Focep is, en of dieselfde genotipe (VVG 0425) wat op volwasse bolle dominant is, waargeneem kon word op hierdie bronne. Focep-isolate is verkry van sewe van die 13 uiesaadlotte asook van uiesaailinge wat in al vyf uiesaailingkwekerye in die Wes-Kaap versamel is. Focep-saailinginfeksie was meer as dubbel in die 14-week groeistadium as wat dit in die 6-week stadium was. Saadinfeksies deur Focep was laag, maar die saadgedraagde aard van Focep is bevestig deur aan te toon dat ’n Focep-transformant wat met ‘n groen fluoreserende proteïen geëtiketeer is, van geïnfekteerde grond na uiesaad oorgedra kon word via die uiebolle en -saadstele. Dit is dus duidelik dat kommersiële saad en saailinge as inokulumbronne van Focep dien. Die Focep-genotipes op saad en saailinge verskil egter van dié in volwasse bolle en is nie deur VVG 0425 gedomineer nie. Verder was die meeste (≤ 60%) saad- en saailingisolate matig virulent, in teenstelling met die meestal hoogs virulente isolate uit volwasse bolle.
78

CHARACTERIZATION OF BIOLOGICALLY IMPORTANT VOLATILE AND NON-VOLATILE MOLECULES VIA HETEROATOM DETERMINATION USING CHROMATOGRAPHY AND MASS SPECTROMETRY

SHAH, MONIKA 17 July 2006 (has links)
No description available.
79

Functionalization of Nanocarbons for Composite, Biomedical and Sensor Applications

Kuznetsov, Oleksandr 24 July 2013 (has links)
New derivatives of carbon nanostructures: nanotubes, nano-onions and nanocrystalline diamonds were obtained through fluorination and subsequent functionalization with sucrose. Chemically modified nanocarbons show high solubility in water, ethanol, DMF and can be used as biomaterials for medical applications. It was demonstrated that sucrose functionalized nanostructures can find applications in nanocomposites due to improved dispersion enabled by polyol functional groups. Additionally, pristine and chemically derivatized carbon nanotubes were studied as nanofillers in epoxy composites. Carbon nanotubes tailored with amino functionalities demonstrated better dispersion and crosslinking with epoxy polymer yielding improved tensile strength and elastic properties of nanocomposites. Reductive functionalization of nanocarbons, also known as Billups reaction, is a powerful method to yield nanomaterials with high degree of surface functionalization. In this method, nanocarbon salts prepared by treatment with lithium or sodium in liquid ammonia react readily with alkyl and aryl halides as well as bromo carboxylic acids. Functionalized materials are soluble in various organic or aqueous solvents. Water soluble nanodiamond derivatives were also synthesized by reductive functionalization of annealed nanodiamonds. Nanodiamond heat pretreatment was necessary to yield surface graphene layers and facilitate electron transfer from reducing agent to the surface of nanoparticles. Other carbon materials such as activated carbon and anthracite coal were also derivatized using reductive functionalization to yield water soluble activated carbon and partially soluble in organic solvents anthracite. It was shown that activated carbon can be effectively functionalized by Billups method. New derivatives of activated carbon can improve water treatment targeting specific impurities and bio active contaminants. It was demonstrated that functionalized carbon nanotubes are suitable for real time radiation measurements. Radiation sensor incorporating derivatized carbon nanotubes is lightweight and reusable. In summary, functionalization of carbon nanomaterials opens new avenues for processing and applications ranging from biomedicine to radiation sensing in space.
80

Organinių mulčių liekamasis poveikis dirvožemio savybėms ir piktžolių dygimui / The Residual Effect of Organic Mulches on Soil Properties and Weed Emergence

Indrulėnaitė, Kristina 03 June 2011 (has links)
Dviejų veiksnių mulčiavimo tyrimai buvo vykdyti 2004 – 2009 m. Lietuvos žemės ūkio universiteto Pomologiniame sode. 2010 m. tirtas organinių mulčių liekamasis poveikis. Visuose laukeliuose eilutėmis augintas valgomojo svogūno (Allium cepa) pasėlis. Atstumas tarp eilučių - 0,5 m. Nevartotos trąšos ir cheminės augalų apsaugos priemonės. Norint išsiaiškinti greitesnį organinių mulčių poveikį dirvožemio savybėms ir augančių augalų pasėliams, nuo 2004 m. nevartotos trąšos ir cheminės augalų apsaugos priemonės. Tyrimų variantai – veiksnys A - skirtingi organiniai mulčiai: Al - nemulčiuota (NE), A2 - šiaudai (ŠD), A3 - durpės (DU), A4 - pjuvenos (PJ), A5 - smulkinta žolė (ŽO), veiksnys B - mulčio sluoksnio storis: Bl - 5 cm, B2 - 10 cm. Pradinis bandymo laukelio ilgis 6 m., plotis 2 m., plotas 12 m2. Apskaitinio laukelio ilgis 5 m., plotis 1 m., plotas 5 m2. Variantai pakartojimuose išdėstyti rendomizuotai. Pakartojimai išdėstyti dviem eilėmis. Bandymas vykdytas 4 pakartojimais. Nustatyta, kad anksčiau įterpti organiniai mulčiai esmingai nepakeitė dirvožemio temperatūros, tačiau esmingai didino dirvožemio drėgnumą. Storesnis mulčio sluoksnis turėjo tendenciją didinti dirvožemio temperatūrą ir dirvožemio drėgnumą. Ilgametis organinių mulčių įterpimas esmingai nepakeitė dirvožemio pH, tačiau dirvožemio azotingumą esmingai didino šiaudų mulčias, o fosforingumą ir kalingumą esmingai didino šiaudų ir žolės mulčiai. Vegetacijos periodo metu piktžolių dygimas kito nevienodai... [toliau žr. visą tekstą] / Two factors mulching studies were carried out 2004 - 2009 in Lithuanian University of Agriculture Pomology garden. 2010 studied the residual effect of organic mulch. All lines grown in the fields of edible onion (Allium cepa) crops. The distance between the lines – 0,5 in Unused fertilizer and chemical plant protection measures. To find out more rapid organic mulches on soil properties and crop-growing plants since 2004 unused fertilizer and chemical plant protection measures. Study options - a factor - the different mulches in Al – no mulching (N) A2 - straw (ND), A3 - peat (DU), A4 - sawdust (PJ), A5 - minced herb (ZO), factor B - mulch thickness: BL - 5 cm, B2 - 10 cm. Initial field testing of length 6, width of 2, an area of 12 m2. Accounting field, length 5 m, width 1, the area 5 m-2. Variants rendomizuotai reps out. Reps set in two rows. The test is carried out by four repetitions. It was found that mulches before insert substantially changed the soil temperature, but substantially increased soil moisture. A thicker layer of mulch tended to increase soil temperature and soil moisture. Insert a long-time organic mulch on soil pH did not change substantially, however, substantially increased the soil nitrogen content of straw mulch, phosphorus and potassium and substantially increased the straw and grass mulches. During the growing season germination of weeds did not move. Short-emergence weed mulches had previously used sedative. Promoted the regeneration of perennial... [to full text]

Page generated in 0.0878 seconds