• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Online parameter estimation applied to mixed conduction/radiation

Shah, Tejas Jagdish 29 August 2005 (has links)
The conventional method of thermal modeling of space payloads is expensive and cumbersome. Radiation plays an important part in the thermal modeling of space payloads because of the presence of vacuum and deep space viewing. This induces strong nonlinearities into the thermal modeling process. There is a need for extensive correlation between the model and test data. This thesis presents Online Parameter Estimation as an approach to automate the thermal modeling process. The extended Kalman fillter (EKF) is the most widely used parameter estimation algorithm for nonlinear models. The unscented Kalman filter (UKF) is a new and more accurate technique for parameter estimation. These parameter estimation techniques have been evaluated with respect to data from ground tests conducted on an experimental space payload.
2

Online identifikace parametrů přívěsu s využitím ultrazvukových senzorů / Online Identification of Trailer Parametry using Ultrasond Sensors

Vejlupek, Josef Unknown Date (has links)
This thesis deals with utilizing "the common ultrasonic parking sensors" for assisting the driver with backing-up a trailer. Key issues solved in this thesis are "Online trailer parameter estimation:" determining the estimate of angle between the car and the trailer, and determining the estimate of the length of the trailer shaft (distance from trailer coupling to trailer axle). Thesis contains the model of kinematics of the car with coupled trailer and ultrasonic sensor model together with the trailer viewd as an obstacle.
3

Online identifikace parametrů přívěsu s využitím ultrazvukových senzorů / Online Identification of Trailer Parametry using Ultrasond Sensors

Vejlupek, Josef January 2017 (has links)
This thesis deals with utilizing "the common ultrasonic parking sensors" for assisting the driver with backing-up a trailer. Key issues solved in this thesis are "Online trailer parameter estimation:" determining the estimate of angle between the car and the trailer, and determining the estimate of the length of the trailer shaft (distance from trailer coupling to trailer axle). Thesis contains the model of kinematics of the car with coupled trailer and ultrasonic sensor model together with the trailer viewd as an obstacle.
4

Determination Of Stochastic Model Parameters Of Inertial Sensors

Unver, Alper 01 January 2013 (has links) (PDF)
ABSTRACT DETERMINATION OF STOCHASTIC MODEL PARAMETERS OF INERTIAL SENSORS &Uuml / nver, Alper PhD, Department of Electric Electronic Engineering Supervisor: Prof. Dr. M&uuml / beccel Demirekler January 2013, 82 pages Gyro and accelerometer systematic errors due to biases, scale factors, and misalignments can be compensated via an on-board Kalman filtering approach in a Navigation System. On the other hand, sensor random noise sources such as Quantization Noise (QN), Angular Random Walk (ARW), Flicker Noise (FN), and Rate Random Walk (RRW) are not easily estimated by an on-board filter, due to their random characteristics. In this thesis a new method based on the variance of difference sequences is proposed to compute the powers of the above mentioned noise sources. The method is capable of online or offline estimation of stochastic model parameters of the inertial sensors. Our aim in this study is the estimation of ARW, FN and RRW parameters besides the quantization and the Gauss-Markov noise parameters of the inertial sensors. The proposed method is tested both on the simulated and the real sensor data and the results are compared with the Allan variance method. Comparison shows very satisfactory results for the performance of the method. Computational load of the new method is less than the computational load of the Allan variance on the order of tens. One of the usages of this method is the individual noise characterization. A noise, whose power spectral density has a constant slope, can be identified accurately by the proposed method. In addition to this, the parameters of the GM noise can also be determined. Another idea developed here is to approximate the overall error source as a combination of ARW and some number of GM sources only. The reasons of selecting such a structure is the feasibility of using these models in a Kalman filter framework for error propagation as well as their generality of modeling other noise sources.

Page generated in 0.5411 seconds