• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contributions to the theory of Gaussian Measures and Processes with Applications

Zachary A Selk (12474759) 28 April 2022 (has links)
<p>This thesis studies infinite dimensional Gaussian measures on Banach spaces. Let $\mu_0$ be a centered Gaussian measure on Banach space $\mathcal B$, and $\mu^\ast$ is a measure equivalent to $\mu_0$. We are interested in approximating, in sense of relative entropy (or KL divergence) the quantity $\frac{d\mu^z}{d\mu^\ast}$ where $\mu^z$ is a mean shift measure of $\mu_0$ by an element $z$ in the so-called ``Cameron-Martin" space $\mathcal H_{\mu_0}$. That is, we want to find the information projection</p> <p><br></p> <p>$$\inf_{z\in \mathcal H_{\mu_0}} D_{KL}(\mu^z||\mu_0)=\inf_{z\in \mathcal H_{\mu_0}} E_{\mu^z} \left(\log \left(\frac{d\mu^z}{d\mu^\ast}\right)\right).$$</p> <p><br></p> <p>We relate this information projection to a mode computation, to an ``open loop" control problem, and to a variational formulation leading to an Euler-Lagrange equation. Furthermore, we use this relationship to establish a kind of Feynman-Kac theorem for systems of ordinary differential equations. We demonstrate that the solution to a system of second order linear ordinary differential equations is the mode of a diffusion, analogous to the result of Feynman-Kac for parabolic partial differential equations. </p>

Page generated in 0.0376 seconds