• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 2
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 15
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Polynomial-Time Reasoning Support for Design and Maintenance of Large-Scale Biomedical Ontologies

Suntisrivaraporn, Boontawee 05 February 2009 (has links) (PDF)
Description Logics (DLs) belong to a successful family of knowledge representation formalisms with two key assets: formally well-defined semantics which allows to represent knowledge in an unambiguous way and automated reasoning which allows to infer implicit knowledge from the one given explicitly. This thesis investigates various reasoning techniques for tractable DLs in the EL family which have been implemented in the CEL system. It suggests that the use of the lightweight DLs, in which reasoning is tractable, is beneficial for ontology design and maintenance both in terms of expressivity and scalability. The claim is supported by a case study on the renown medical ontology SNOMED CT and extensive empirical evaluation on several large-scale biomedical ontologies.
22

Modélisation des signes dans les ontologies biomédicales pour l'aide au diagnostic.

Donfack Guefack, Sidoine Pierre V. 20 December 2013 (has links) (PDF)
Introduction : Établir un diagnostic médical fiable requiert l'identification de la maladie d'un patient sur la base de l'observation de ses signes et symptômes. Par ailleurs, les ontologies constituent un formalisme adéquat et performant de représentation des connaissances biomédicales. Cependant, les ontologies classiques ne permettent pas de représenter les connaissances liées au processus du diagnostic médical : connaissances probabilistes et connaissances imprécises et vagues. Matériel et méthodes : Nous proposons des méthodes générales de représentation des connaissances afin de construire des ontologies adaptées au diagnostic médical. Ces méthodes permettent de représenter : (a) Les connaissances imprécises et vagues par la discrétisation des concepts (définition de plusieurs catégories distinctes à l'aide de valeurs seuils ou en représentant les différentes modalités possibles). (b) Les connaissances probabilistes (les sensibilités et les spécificités des signes pour les maladies, et les prévalences des maladies pour une population donnée) par la réification des relations ayant des arités supérieures à 2. (c) Les signes absents par des relations et (d) les connaissances liées au processus du diagnostic médical par des règles SWRL. Un moteur d'inférences abductif et probabiliste a été conçu et développé. Ces méthodes ont été testées à l'aide de dossiers patients réels. Résultats : Ces méthodes ont été appliquées à trois domaines (les maladies plasmocytaires, les urgences odontologiques et les lésions traumatiques du genou) pour lesquels des modèles ontologiques ont été élaborés. L'évaluation a permis de mesurer un taux moyen de 89,34% de résultats corrects. Discussion-Conclusion : Ces méthodes permettent d'avoir un modèle unique utilisable dans le cadre des raisonnements abductif et probabiliste, contrairement aux modèles proposés par : (a) Fenz qui n'intègre que le mode de raisonnement probabiliste et (b) García-crespo qui exprime les probabilités hors du modèle ontologique. L'utilisation d'un tel système nécessitera au préalable son intégration dans le système d'information hospitalier pour exploiter automatiquement les informations du dossier patient électronique. Cette intégration pourrait être facilitée par l'utilisation de l'ontologie du système.
23

Polynomial-Time Reasoning Support for Design and Maintenance of Large-Scale Biomedical Ontologies

Suntisrivaraporn, Boontawee 21 January 2009 (has links)
Description Logics (DLs) belong to a successful family of knowledge representation formalisms with two key assets: formally well-defined semantics which allows to represent knowledge in an unambiguous way and automated reasoning which allows to infer implicit knowledge from the one given explicitly. This thesis investigates various reasoning techniques for tractable DLs in the EL family which have been implemented in the CEL system. It suggests that the use of the lightweight DLs, in which reasoning is tractable, is beneficial for ontology design and maintenance both in terms of expressivity and scalability. The claim is supported by a case study on the renown medical ontology SNOMED CT and extensive empirical evaluation on several large-scale biomedical ontologies.

Page generated in 0.0528 seconds