Spelling suggestions: "subject:"ontorec."" "subject:"metrorec.""
1 |
Recommender Systems for UML Class Diagrams.TOLEDO, Saulo Soares de. 16 May 2018 (has links)
Submitted by Kilvya Braga (kilvyabraga@hotmail.com) on 2018-05-16T13:28:09Z
No. of bitstreams: 1
SAULO SOARES DE TOLEDO - DISSERTAÇÃO (PPGCC) 2016.pdf: 2345909 bytes, checksum: dcaa7238380f7791f922778432a5b9ea (MD5) / Made available in DSpace on 2018-05-16T13:28:09Z (GMT). No. of bitstreams: 1
SAULO SOARES DE TOLEDO - DISSERTAÇÃO (PPGCC) 2016.pdf: 2345909 bytes, checksum: dcaa7238380f7791f922778432a5b9ea (MD5)
Previous issue date: 2016 / Modelos UML são usados de várias formas na engenharia de software. Eles podem modelar desde requisitos até todo o software, e compreendem vários diagramas. O diagrama de classes, o mais popular dentre os diagramas da UML, faz uso de vários elementos UML e adornos, tais como abstração, interfaces, atributos derivados, conjuntos de generalização, composições e agregações. Atualmente, não há maneira fácil de encontrar este tipo de diagrama com base nestas características para a reutilização ou a aprendizagem por tarefas de exemplo. Por outro lado, Sistemas de Recomendação são ferramentas e técnicas que são capazes de descobrir os elementos mais adequados para um usuário, dentre muitos outros. Existem várias técnicas de recomendação, que usam informações dos elementos de várias maneiras, ao uso da opinião de outros usuários. Sistemas de recomendação já foram utilizadas com sucesso em vários problemas da engenharia de software, a exemplo da recomendação de partes de código para reuso (como métodos,por exemplo) e da identificação do desenvolvedor mais adequado para trabalhar em certas áreas do software. Este trabalho tem como objetivo propor e avaliar (i) uma representação baseada em conteúdo para diagramas de classe e as preferências do usuário, (ii) um novo algoritmo de recomendação baseado no conhecimento, (iii) a aplicação deste algoritmo e outros dois outros do estado da parte para a recomendação de diagramas de classe UML e (iv) uma avaliação destas abordagens contra uma sugestão aleatória. Para atingir este objetivo, foi realizado um estudo de caso com estudantes de ciência da computação e egressos. Depois de comparar os algoritmos, os nossos resultados mostram que, para o nosso conjunto de dados, todos eles são melhores do que uma recomendação aleatória. / UML models are used in several ways in the software engineering. They can model from requirements to the entire software, and comprise several diagrams. The Class diagram, the most popular among the UML diagrams, makes use of several UML elements and adornments, such as abstraction, interfaces, derived attributes, generalization sets, compositions and aggregations. Currently, there is no easy way to find this kind of diagram based on these features for reuse or learning by example’s tasks, for instance. On the other hand, Recommender Systems are powerful tools and techniques that are able to discover the most appropriate elements to an user among many others. There are several recommender techniques, from using the elements’ information in several ways, to using other users’ opinions. Recommender systems were already used successfully in several software engineering problems, as discovering pieces of code to recommend (as methods, for example) and finding the best developer to work in certain software problems. This work aims to propose and evaluate (i) a content-based Recommender System’s representation for class diagrams’ features and user’s preferences, (ii) a new knowledge-based recommender algorithm, (iii) the application this algorithm and two other state of the art content-based on esto the recommendation of UML class diagrams and (iv) an evaluation of these approaches against a random suggestion. To achieve this goal, we conducted a case study with computer science students and egresses. After comparing the algorithms, our results show that, for our dataset, all of them are better than a random recommendation.
|
2 |
Recommender systems for UML class diagrams.TOLEDO, Saulo Soares de. 14 September 2017 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2017-09-14T18:41:16Z
No. of bitstreams: 1
dissertacao_saulo_toledo_recsys_uml.pdf: 2345909 bytes, checksum: dcaa7238380f7791f922778432a5b9ea (MD5) / Made available in DSpace on 2017-09-14T18:41:16Z (GMT). No. of bitstreams: 1
dissertacao_saulo_toledo_recsys_uml.pdf: 2345909 bytes, checksum: dcaa7238380f7791f922778432a5b9ea (MD5)
Previous issue date: 2016-09-05 / Modelos UML são usados de várias formas na engenharia de software. Eles podem modelar desde requisitos até todo o software, e compreendem vários diagramas. O diagrama de classes, o mais popular dentre os diagramas da UML, faz uso de vários elementos UML e adornos, tais como abstração, interfaces, atributos derivados, conjuntos de generalização, composições e agregações. Atualmente, não há maneira fácil de encontrar este tipo de diagrama com base nestas características para a reutilização ou a aprendizagem por tarefas de exemplo. Por outro lado, Sistemas de Recomendação são ferramentas e técnicas que são capazes de descobrir os elementos mais adequados para um usuário, dentre muitos outros. Existem várias técnicas de recomendação, que usam informações dos elementos de várias maneiras, ao uso da opinião de outros usuários. Sistemas de recomendação já foram utilizados com sucesso em vários problemas de engenharia de software. Este trabalho tem como objetivo propor e avaliar (i) uma representação baseada em conteúdo para diagramas
de classe e as preferências do usuário,(ii) um novo algoritmo de recomendação baseado no conhecimento, (iii) a aplicação deste algoritmo e outros dois outros do estado da arte para a recomendação de diagramas de classe UML e (iv) uma avaliação destas abordagens contra uma sugestão aleatória. Para atingir este objetivo, foi realizado um estudo de caso com estudantes de ciência da computação e egressos. Depois de comparar os algoritmos, os nossos resultados mostram que, para o nosso conjunto de dados, todos eles são melhores do que uma recomendação aleatória. / UML models are used in several ways in the software engineering. They can model from requirements to the entire software, and comprise several diagrams. The Class diagram, the most popular among the UML diagrams, makes use of several UML elements and adornments, such as abstraction, interfaces, derived attributes, generalization sets, compositions and aggregations. Currently, there is no easy way to find this kind of diagram based on these features for reuse or learning by example’s tasks, for instance. On the other hand, Recommender Systems are powerful tools and techniques that are able to discover the most appropriate elements to an user among many others. There are several recommender techniques, from using the elements’ information in several ways, to using other users’ opinions. Recommender systems were already used successfully in several software engineering problems, as discovering pieces of code to recommend (as methods, for example) and finding the best developer to work in certain software problems. This work aims to propose and evaluate (i) a content-based Recommender System’s representation for class diagrams’ features and user’s preferences, (ii) a new knowledge-based recommender algorithm, (iii) the application this algorithm and two other state of the art content-based ones to the recommendation of UML class diagrams and (iv) an evaluation of these approaches against a random suggestion. To achieve this goal, we conducted a case study with computer science students and egresses. After comparing the algorithms, our results show that, for our dataset, all of
them are better than a random recommendation.
|
Page generated in 0.0305 seconds