• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Operadores hipercíclicos e o critério de hiperciclicidade / Hypercyclic operators and the hypercyclicity criterion

Augusto, Andre Quintal 03 August 2015 (has links)
Dado um espaço vetorial topológico $X$ e um operador linear $T$ contínuo em $X$, dizemos que $T$ é {\\it hipercíclico} se, para algum $y \\in X$, o conjunto $\\{y, T(y), T^2(y), T^3(y), \\ldots T^n(y) \\ldots \\}$ for denso em $X$. Um dos principais resultados envolvendo operadores hipercíclicos consiste no chamado {\\it Critério de Hiperciclicidade}. Tal Critério fornece uma condição suficiente para que um operador linear contínuo seja hipercíclico. Por muitos anos, procurou-se saber se o Critério também era uma condição necessária. Em \\cite, Bayart e Matheron construíram, nos espaços de Banach clássicos $c_0$ e $\\ell_p, 1 \\leq p < \\infty$, um operador hipercíclico $T$ que não satisfaz o Critério. Neste trabalho, apresentamos a construção realizada por Bayart e Matheron. Além disso, também apresentamos alguns resultados sobre hiperciclicidade. / Given a topological vector space $X$ and a continuous linear operator $T$, we say that $T$ is {\\it hypercylic} if, for some $y \\in X$, the set $\\{y, T(y), T^2(y), T^3(y), \\ldots T^n(y) \\ldots \\}$ is dense in $X$. One of the main results concerning hypercyclic operators is the so-called {\\it Hypercyclicity Criterion}. Such Criterion gives a sufficient condition to a continuous linear operator be hypercyclic. For many years, it sought to know if the Criterion was also a necessary condition. In \\cite, Bayart and Matheron constructed, in the classical Banach spaces $c_0$ e $\\ell_p, 1 \\leq p < \\infty$, a hypercyclic operator $T$ which doesn\'t satisfy the Criterion. In this work, we present the Bayart/Matheron construction. We also present some results about hypercyclicity.
2

Operadores hipercíclicos e o critério de hiperciclicidade / Hypercyclic operators and the hypercyclicity criterion

Andre Quintal Augusto 03 August 2015 (has links)
Dado um espaço vetorial topológico $X$ e um operador linear $T$ contínuo em $X$, dizemos que $T$ é {\\it hipercíclico} se, para algum $y \\in X$, o conjunto $\\{y, T(y), T^2(y), T^3(y), \\ldots T^n(y) \\ldots \\}$ for denso em $X$. Um dos principais resultados envolvendo operadores hipercíclicos consiste no chamado {\\it Critério de Hiperciclicidade}. Tal Critério fornece uma condição suficiente para que um operador linear contínuo seja hipercíclico. Por muitos anos, procurou-se saber se o Critério também era uma condição necessária. Em \\cite, Bayart e Matheron construíram, nos espaços de Banach clássicos $c_0$ e $\\ell_p, 1 \\leq p < \\infty$, um operador hipercíclico $T$ que não satisfaz o Critério. Neste trabalho, apresentamos a construção realizada por Bayart e Matheron. Além disso, também apresentamos alguns resultados sobre hiperciclicidade. / Given a topological vector space $X$ and a continuous linear operator $T$, we say that $T$ is {\\it hypercylic} if, for some $y \\in X$, the set $\\{y, T(y), T^2(y), T^3(y), \\ldots T^n(y) \\ldots \\}$ is dense in $X$. One of the main results concerning hypercyclic operators is the so-called {\\it Hypercyclicity Criterion}. Such Criterion gives a sufficient condition to a continuous linear operator be hypercyclic. For many years, it sought to know if the Criterion was also a necessary condition. In \\cite, Bayart and Matheron constructed, in the classical Banach spaces $c_0$ e $\\ell_p, 1 \\leq p < \\infty$, a hypercyclic operator $T$ which doesn\'t satisfy the Criterion. In this work, we present the Bayart/Matheron construction. We also present some results about hypercyclicity.
3

Operadores hipercíclicos em espaços vetoriais topológicos / Hypercyclic operators on topological vector spaces

Costa, Debora Cristina Brandt 16 March 2007 (has links)
Dado E um espaço vetorial topológico e T um operador linear contínuo em E, diremos que T é hipercíclico se, para algum elemento x pertencente a E, a órbita de x sob T, Orb(x,T)={x, Tx, T^2 x,...}, for densa em E. Nosso objetivo será apresentar alguns resultados sobre hiperciclicidade e observar como alguns espaços comportam-se diante dessa classe de operadores. \\\\ / Let E be a topological vector space and T a continuous linear operator on E. We say that T is hypercyclic if, for some x in E, the orbit of x on T, Orb(x,T)={x, Tx, T^2 x,...}, is dense in E. Our aim will be to study some results about hypercyclicity and to observe how some spaces behave regarding this class of operators.
4

Operadores hipercíclicos em espaços vetoriais topológicos / Hypercyclic operators on topological vector spaces

Debora Cristina Brandt Costa 16 March 2007 (has links)
Dado E um espaço vetorial topológico e T um operador linear contínuo em E, diremos que T é hipercíclico se, para algum elemento x pertencente a E, a órbita de x sob T, Orb(x,T)={x, Tx, T^2 x,...}, for densa em E. Nosso objetivo será apresentar alguns resultados sobre hiperciclicidade e observar como alguns espaços comportam-se diante dessa classe de operadores. \\\\ / Let E be a topological vector space and T a continuous linear operator on E. We say that T is hypercyclic if, for some x in E, the orbit of x on T, Orb(x,T)={x, Tx, T^2 x,...}, is dense in E. Our aim will be to study some results about hypercyclicity and to observe how some spaces behave regarding this class of operators.

Page generated in 0.2443 seconds