• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Operators on corner manifolds with exit to infinity

Calvo, D., Schulze, Bert-Wolfgang January 2005 (has links)
We study (pseudo-)differential operators on a manifold with edge Z, locally modelled on a wedge with model cone that has itself a base manifold W with smooth edge Y . The typical operators A are corner degenerate in a specific way. They are described (modulo ‘lower order terms’) by a principal symbolic hierarchy σ(A) = (σ ψ(A), σ ^(A), σ ^(A)), where σ ψ is the interior symbol and σ ^(A)(y, η), (y, η) 2 T*Y 0, the (operator-valued) edge symbol of ‘first generation’, cf. [15]. The novelty here is the edge symbol σ^ of ‘second generation’, parametrised by (z, Ϛ) 2 T*Z 0, acting on weighted Sobolev spaces on the infinite cone with base W. Since such a cone has edges with exit to infinity, the calculus has the problem to understand the behaviour of operators on a manifold of that kind. We show the continuity of corner-degenerate operators in weighted edge Sobolev spaces, and we investigate the ellipticity of edge symbols of second generation. Starting from parameter-dependent elliptic families of edge operators of first generation, we obtain the Fredholm property of higher edge symbols on the corresponding singular infinite model cone.
2

Elliptic differential operators on manifolds with edges

Schulze, Bert-Wolfgang January 2006 (has links)
On a manifold with edge we construct a specific class of (edgedegenerate) elliptic differential operators. The ellipticity refers to the principal symbolic structure σ = (σψ, σ^) of the edge calculus consisting of the interior and edge symbol, denoted by σψ and σ^, respectively. For our choice of weights the ellipticity will not require additional edge conditions of trace or potential type, and the operators will induce isomorphisms between the respective edge spaces.

Page generated in 0.1138 seconds